• Title/Summary/Keyword: Form Resistance

Search Result 1,325, Processing Time 0.025 seconds

A Study on the Characteristics of wave Resistance and Hull Form obtained at Finte Water Depth (유한수심(有限水深)에서의 선형계획(線型計劃))

  • Hyo-Chul,Kim;J.C.,Seo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 1980
  • From the singularity distribution which obtained by minimum wave resistance condition, optimum hull form is obtained by stream line trancing method as Inui and Pien did. Thus obtained hull form has a extruded bottom along a keel line. Therefore the hull form must be modified to have flat bottom. This modification process is conducted by putting a fictitious bottom. It is found out that the wave resistance does not significantly alter at design speed even though the hull form has remarkably changed at the bottom. Therefore flattening the bottom by the effect of depth may be more rational for practical hull form design than ordinary manual hull-form modification.

  • PDF

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

Minimum Wave Resistance Hull Form Derived from Center Plane Source Distribution and its Application to Hull Form Design (선체중심선면(船體中心線面)에 분포(分布)된 특이점계(特異點系)로부터 얻어지는 최소조파저항선형(最少造波抵抗船型)과 그 응용(應用))

  • Hyo-Chul,Kim;B.S.,Hyun
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.19 no.4
    • /
    • pp.31-37
    • /
    • 1982
  • Developing a minimum wave resistance hull form which is satisfying the given requirements such as displacement and speed is one of the important problems in ship hydrodynamics. The theoretical approach conducted by Pien was successful in developing an optimized hull form, however, which can not be applied directly to practical hull form without manual lines fairing process. To avoid this difficulty, source distribution which arrived after the optimization was put into a fictitious restricted channel and as a result practicably modified hull form was derived by stream line tracing. The wave resistance of the hull thus obtained was calculated by solving the simplified integral equation suggested by Kan. The resistance at design point is almost same with that of the original hull which was represented by source distribution on the vertical rectangular center plane. It is therefore recommended to use the derived hull form for the hull which obtained after manual lines fairing process at Pienoid method. Further researches both in theory and experiment are necessary before this concept is put into practical application.

  • PDF

A Study on the Basic Design for Platform Support Vessel (PSV) and Hull Form Development for Enhancement of Resistance & Propulsion Performance (해양작업지원선(PSV)의 기본설계 및 저항추진 성능 향상을 위한 선형개선 방안 연구)

  • Yum, Jong-Gil;Kang, Kuk-Jin;Lee, Young-Yeon;Lee, Chun-Ju;Ok, Kun-Do
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.196-204
    • /
    • 2018
  • Present paper shows the basic design procedure for platform support vessel operating in open sea, and hull form development process. General design concept considering the operating mission, operating sea condition and shipping freight, etc. is explained shortly. For the hull form design, the initial hull form was designed based on the reference PSVs. The resistance and propulsion test results for the initial hull form with twin Azimuth thruster were analyzed and a few items for improvement were derived. At the next stage, main parameters including Length, Cp-curve, Cb, Lcb, etc. were changed totally for the hull form improvement. Furthermore, 3 different bulbous bows for the fore-body design to reduce the wave resistance and after-body design to reduce the residual resistance were carried out. The best hull form among the 3 fore-bodies with same after-body was selected through the comparison of wave resistance calculation results. Twin ducted Azimuth thruster with the smaller propeller diameter than the former were adapted to increase the propulsive efficiency. The final hull form with the twin Azimuth thruster was evaluated to satisfy more than the target design speed 14 knots in sea condition with sea margin 15% at the 5,000kW BHP through the model test in KRISO.

Estimation of Ship Resistance by Statistical Analysis and its Application to Hull Form Modification (통계해석에 의한 저항 추정 및 선형 개량)

  • S.W.,Hong;K.J.,Cho;D.S.,Yun;E.C.,Kim;W.C.,Jung
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.4
    • /
    • pp.28-38
    • /
    • 1988
  • This paper describes the statistical analysis method of predicting the ship resistance. The equation for the wavemaking resistance coefficient is derived as the principal dimensions and sectional area coefficients by using the wavemaking resistance theory and its regression coefficients are determined from the regression analysis of the resistance test results. The equation for the form factor is derived by purely regression analysis of the principal dimensions, sectional area coefficients and resistance test results. Also, it is shown that the wavemaking resistance can be minimize by varying the sectional area curve without changing the principal dimensions of the ship. This methods were applied to the resistance prediction of a bulk carrier. And the, the modified hull form with minimum wavemaking resistance was obtained and the reduction of effective power was confirmed by the resistance test.

  • PDF

Improvement of resistance performance of the 4.99 ton class fishing boat (4.99톤 어선의 저항성능 개선)

  • JEONG, Seong-Jae;AN, Heui-Chun;KIM, In-Ok;PARK, Chang-Doo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.53 no.4
    • /
    • pp.446-455
    • /
    • 2017
  • The improvement of resistance performance for the 4.99 ton class fishing boats was shown. The 4.99 ton fishing boats are the most commonly used one in the Korean coastal region. The evaluation of resistance performance was estimated by the Computational Fluid Dynamics (CFD) analysis. The CFD simulation was performed by the validation for various types of bow shapes on the hull. The optimized hull form from the simulation was selected and showed the best resistance performance. This hull type was tested on the towing tank in the National Institute of Fisheries Science (NIFS). The effective horsepower (EHP) was estimated by the resistance test on the towing tank with the bare hull condition. The drag force on the three service speed conditions was obtained for the resistance analysis to power prediction. The measured drag forces are compared with the results from the CFD simulation with one another. As results of the model tests, it was confirmed that the shape of the bow is an important factor in the resistance performance. The effective horsepower decreased about 30% in comparison with the conventional hull form. Also, the resistance performance improved the reduction of required horsepower, which especially contributed to the energy-saving for the fisheries industry. In the CFD analysis, the resistance performance improved slightly. In this case, the ratio of the residual resistance ($C_R$) in the total resistance ($C_T$) was high. Therefore, the CFD analysis was not enough to satisfy with reflection for the free surface and wave form in the CFD procedure. Both model test and CFD calculation in this study can be applied to the initial design process for the coastal fishing vessel.

Development of Hull Form and Propeller for Medium Class Container Vessel (중형 컨테이너선의 선형 및 추진기 개발 사례)

  • LEE C.H.;JEONG S.G.;CHOI Y.D.;LEEM H.K.
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.57-62
    • /
    • 2005
  • STX shipbuilding Co,. Ltd. has been developed a hull form and propeller of medium class container vessel. The present paper deals with numerical calculations and experimental tests for the investigation of wave resistance, viscous resistance and propeller. The characteristics of wave resistance and self propulsion factors are varied in order to find an optimized hull form. The measured results have been compared with computed results by 'WAVIS' The prediction of the caviation occurrence was predicted by 'Opti-pro' and measurement is performed in KRISO.

  • PDF

FORM Reliability-based Resistance Factors for Driven Steel Pipe Piles (FORM 신뢰성 기반 항타강관말뚝 저항계수 산정)

  • Park, Jae-Hyun;Huh, Jung-Won;Lee, Ju-Hyung;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.779-783
    • /
    • 2008
  • LRFD Resistance factors for static bearing capacity of driven steel pipe piles were calibrated in the freamework of reliability theory. Reliability analysis was performed by the First Order Reliability Method (FORM) using resistance bias factor statistics.The target reliability indices are selected as 2.0 and 2.33 for group pile case and 2.5 for single pile case, based on the reliability level of the current design practice and considering redundancy of pile group, acceptable risk level, construction quality control, and significance of individual structure.

  • PDF

Hull form design for resistance minimization of small-scale LNG bunkering vessels using numerical simulation

  • Pak, Kyung-Ryeong;Song, Gi-Su;Kim, Hee-Jung;Son, Hye-Jong;Park, Hyoung-Gil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.856-867
    • /
    • 2020
  • This paper aims to provide the most useful method of determining an optimum LCB position and design direction of fore- and aft-body hull shape for a SLBV. It is known that the SLBV has a lower length-to-beam ratio, larger Cb and simpler stern shape designed for the installation of azimuth thrusters comparing to those of conventional LNG carriers. Due to these specific particulars of SLBV, the optimum LCB position was very different to that of conventional LNG carrier. And various approaches were applied to determine the optimum fore- and aft-body hull shape. The design direction for the optimum hull-form was evaluated as the minimization of the total resistance which includes the wave-making resistance and form-drag with numerical simulation.

A Study on the Initial Hull Form Development and Resistance Performance of a 45 Knots Class High-Speed Craft (45노트급 고속정의 초기선형 개발과 저항성능에 관한 연구)

  • KIM JU-NAM;JEONG UH-CHEUL;PARK JE-WOONG;KIM DO-JUNG
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.32-36
    • /
    • 2006
  • The initial hull form of a 100 tan, 45 knot class high-speed craft is newly developed. The resistance performances are investigated using a model test at high speed in a circulating water channel. The effect of the initial trim is studied together. Wave patterns are observed to clarify the relationship between the resistance performance and the wave characteristics. It can be found that the initial trim plays a role in increasing the resistance performance above a certain velocity.