• 제목/요약/키워드: Forging Stage

검색결과 122건 처리시간 0.019초

비축대칭 와셔 캠 볼트의 다단 단조공정 설계를 위한 유한요소 해석 (Finite Element Analysis for Multi-stage Forging Process Design of Bolt with Nonaxisymmetric Washer Cam)

  • 김관우;김이태;김완종;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권4호
    • /
    • pp.585-595
    • /
    • 2008
  • Process design of multi-stage forging for a bolt with nonaxisymmetric washer cam has been studied by using finite element method. For shape complexity of the bolt, it is impossible to manufacture in a single stage forging. To design multi-stage forging for the bolt the forging load and fiber flow of each step have been analyzed by using commercial finite element code DEFORM-3D. Simulated results have been compared with experimental ones. Multi-stage forging process has been designed with four stages. The workpiece should be eccentric shape until third forging stage. And then bolt head and washer of eccentrical shape is created in last stage. As a results, It was predicted that shape of product would be good and effective strain would be uniformly distributed in the product. Also, it was predicted whether defects would exist or not by reviewing the fiber flow.

등속조인트용 외륜의 다단 냉간 단조공정에 관한 실험적 연구 (Experimental Study on Multi-Stage Cold Forging for an Outer Race of a CV Joint)

  • 강범수;구태완
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.221-230
    • /
    • 2014
  • This study deals with a series of experimental investigations on multi-stage cold forging of an outer race used for a constant velocity (CV) joint with six inner ball grooves. The multi-stage cold forging, which consists of forward extrusion, upsetting, backward extrusion, and combined sizing-necking including ironing, was used to produce a prototype of the outer race. The cold forging tools such as forging punches and dies required in this multi-stage cold forging were also designed and fabricated. For the combined sizing-necking, especially, the longitudinally six-segmentallized punches were developed to easily eject from the necked inner groove of the outer race with consideration of the operating mechanism. Spheroidized SCr420H billet was used in the experimental study. To verify the suitability of the proposed process, the obtained parts were obtained from each forging operation, and the geometries were compared with the target dimensions. It was confirmed that the outer race with six inner ball grooves was well forged by adopting the proposed multi-stage cold forging, and the dimensional accuracy of the forged outer race matched well with the requirements.

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimensional and Three-Dimensional Approaches)

  • 이민철;전만수
    • 소성∙가공
    • /
    • 제17권3호
    • /
    • pp.155-160
    • /
    • 2008
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric or involve several axisymmetric processes.

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

냉간단조용 금형의 변형모드에 따른 탄성변형량의 측정 및 유한요소 해석 (Measurement and FEM Analysis of Elastic Deformation According to the Forging Stages in Cold Forging Die)

  • 이대근;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.112-116
    • /
    • 2002
  • In cold forging, the elastic behavior of the die has a direct influence on the accuracy of the forging part. And the die dimension is continuously changed during the loading, unloading, and ejecting stage. In this paper, we evaluated the elastic deflections of cold forging die during loading, unloading, and ejecting stage. Uni-axial strain gauges are used to measure elastic strain of die during each forging stage. Strain gauges are attached on the surface of die. A commercial F.E.M code, DEFORM-2D$\^$TM/ is used to predict elastic strain of die. Two method of F.E.M. analysis are used to compare with measured and calculated elastic strain. One is to regard the die as rigid body over forging cycle. And then, the die sass is analyzed by loading the die with pressure from the forging part. The other is to regard the die as elastic body from forging cycle. The elastic strain of die is calculated and the die is elastically deformed at each strop. The calculated results under the elastic die assumption are well agreed with experimental data using strain gauges.

  • PDF

열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구 (A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging)

  • 염성호;이종호;우호길
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

대형 원뿔형 알루미늄 실린더의 멘드렐 단조 공정 개발 (Development of Mandrel Forging Process for Large Conical Aluminum Shell)

  • 남지원;조종래;이경훈;이인환
    • 소성∙가공
    • /
    • 제27권5호
    • /
    • pp.276-280
    • /
    • 2018
  • This paper has developed a forging process for conical shells for making aluminum cylindrical large shells. An incremental forging process was applied to reduce forging loads and die cost. The preform is designed based on the crosssectional area of the final forged shape. Inner diameter of the preform for mandrel forging is constant, and outer diameter is conical so that it matches the cross-sectional area of the product. However, simulation confirmed that the larger diameter is smaller than predicted and the length is larger than predicted because in the initial stage of forging, the large diameter portion first comes into contact with the anvil at the initial stage of forging and stretches in longitudinal direction. So, it has developed a rule to design the preform considering 3-D deformation instead of plane strain deformation at the beginning stage of mandrel forging. The developed mandrel forging process can be applied to more similar products and economic benefits may be obtained.

등속조인트용 외륜의 다단 냉간 단조공정을 위한 공정개선 및 유한요소 해석 (Process Modification and Numerical Simulation for an Outer Race of a CV Joint using Multi-Stage Cold Forging)

  • 강범수;구태완
    • 소성∙가공
    • /
    • 제23권4호
    • /
    • pp.211-220
    • /
    • 2014
  • The outer race of a constant velocity (CV) joint having six inner ball grooves has traditionally been manufactured by multi-stage warm forging, which includes forward extrusion, upsetting, backward extrusions, necking, ironing and sizing, and machining. In the current study, a multi-stage cold forging process is examined and an assessment for replacing and modifying the conventional multi-stage warm forging is made. The proposed procedure is simplified to the backward extrusion of the conventional process, and the sizing and necking are combined into a single sizing-necking step. Thus, the forging surface of the six ball grooves can be obtained without additional machining. To verify the suitability of the proposed process, a 3-dimensional numerical simulation on each operation was performed. The forging loads were also predicted. In addition, a structural integrity evaluation for the tools was carried out. Based on the results, it is shown that the dimensional requirements of the outer race can be well met.

전자식 파킹 브레이크용 세레이션 기어의 냉간다단단조 공정 설계 및 후방 압출특성에 관한 평가 (Multi-stage Cold Forging Process Design and Backward Extrusion Characteristics Evaluation of Serration Gear for Electronic Parking Brake)

  • 서주한;최종원;정의은;강명창
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.130-136
    • /
    • 2022
  • Reducing production costs through net-shaped cold forging is an important aspect in the automobile industry. In this study, we intend to produce a net-shaped electronic parking brake (EPB) serration gear for automobiles, using multi-stage cold forging. These serrations are then assembled to the reduction gear of an EPB actuator. The forging process of the serrations and the cold forging design were verified through finite element analysis (FEA) in order to evaluate metal flow. The forging machine was selected by checking the load using FEA. Based on the FEA results, molds were designed, and parts were made using multi-stage cold forging to produce a net-shaped serration gear.

비축대칭 캠 볼트 단조의 유한요소 해석 (Finite element analysis for forging of nonaxisymmetric cam bolt)

  • 조해용;김완종;이석진;박남기;이승헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1570-1575
    • /
    • 2007
  • The cold-forging process analysed in this paper deals with the cam bolt of a nonaxisymmetric shape which mainly is used as a part in the steering system of a vehicle for the purpose of adjusting shock absorb. So both strength and endurance are very important for the cam bolt. In this study, cam bolt forging process is composed of four stage processes. For three forging stages, shape of workpiece will be eccentrical. And then bolt head and washer of eccentrical shape is created in last stage. 3D finite element analysis repeatedly has been performed with changing dimension of die to obtain adequate former multi forging process and die shape. Simulation results reviewed have influence on deciding design of die and forging process. As a result, Simulation results have provided a direction to improve the process.

  • PDF