• Title/Summary/Keyword: Forgery Detection

Search Result 80, Processing Time 0.02 seconds

A DCT Learning Combined RRU-Net for the Image Splicing Forgery Detection (DCT 학습을 융합한 RRU-Net 기반 이미지 스플라이싱 위조 영역 탐지 모델)

  • Young-min Seo;Jung-woo Han;Hee-jung Kwon;Su-bin Lee;Joongjin Kook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.11-17
    • /
    • 2023
  • This paper proposes a lightweight deep learning network for detecting an image splicing forgery. The research on image forgery detection using CNN, a deep learning network, and research on detecting and localizing forgery in pixel units are in progress. Among them, CAT-Net, which learns the discrete cosine transform coefficients of images together with images, was released in 2022. The DCT coefficients presented by CAT-Net are combined with the JPEG artifact learning module and the backbone model as pre-learning, and the weights are fixed. The dataset used for pre-training is not included in the public dataset, and the backbone model has a relatively large number of network parameters, which causes overfitting in a small dataset, hindering generalization performance. In this paper, this learning module is designed to learn the characterization depending on the DCT domain in real-time during network training without pre-training. The DCT RRU-Net proposed in this paper is a network that combines RRU-Net which detects forgery by learning only images and JPEG artifact learning module. It is confirmed that the network parameters are less than those of CAT-Net, the detection performance of forgery is better than that of RRU-Net, and the generalization performance for various datasets improves through the network architecture and training method of DCT RRU-Net.

  • PDF

A Speech Waveform Forgery Detection Algorithm Based on Frequency Distribution Analysis (음성 주파수 분포 분석을 통한 편집 의심 지점 검출 방법)

  • Heo, Hee-Soo;So, Byung-Min;Yang, IL-Ho;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.35-40
    • /
    • 2015
  • We propose a speech waveform forgery detection algorithm based on the flatness of frequency distribution. We devise a new measure of flatness which emphasizes the local change of the frequency distribution. Our measure calculates the sum of the differences between the energies of neighboring frequency bands. We compare the proposed measure with conventional flatness measures using a set of a large amount of test sounds. We also compare- the proposed method with conventional detection algorithms based on spectral distances. The results show that the proposed method gives lower equal error rate for the test set compared to the conventional methods.

Detection Copy-Move Forgery in Image Via Quaternion Polar Harmonic Transforms

  • Thajeel, Salam A.;Mahmood, Ali Shakir;Humood, Waleed Rasheed;Sulong, Ghazali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4005-4025
    • /
    • 2019
  • Copy-move forgery (CMF) in digital images is a detrimental tampering of artefacts that requires precise detection and analysis. CMF is performed by copying and pasting a part of an image into other portions of it. Despite several efforts to detect CMF, accurate identification of noise, blur and rotated region-mediated forged image areas is still difficult. A novel algorithm is developed on the basis of quaternion polar complex exponential transform (QPCET) to detect CMF and is conducted involving a few steps. Firstly, the suspicious image is divided into overlapping blocks. Secondly, invariant features for each block are extracted using QPCET. Thirdly, the duplicated image blocks are determined using k-dimensional tree (kd-tree) block matching. Lastly, a new technique is introduced to reduce the flat region-mediated false matches. Experiments are performed on numerous images selected from the CoMoFoD database. MATLAB 2017b is used to employ the proposed method. Metrics such as correct and false detection ratios are utilised to evaluate the performance of the proposed CMF detection method. Experimental results demonstrate the precise and efficient CMF detection capacity of the proposed approach even under image distortion including rotation, scaling, additive noise, blurring, brightness, colour reduction and JPEG compression. Furthermore, our method can solve the false match problem and outperform existing ones in terms of precision and false positive rate. The proposed approach may serve as a basis for accurate digital image forensic investigations.

Hybrid Detection Algorithm of Copy-Paste Image Forgery (Copy-Paste 영상 위조의 하이브리드 검출 알고리즘)

  • Choi, YongSoo;Atnafu, Ayalneh Dessalegn;Lee, DalHo
    • Journal of Digital Contents Society
    • /
    • v.16 no.3
    • /
    • pp.389-395
    • /
    • 2015
  • Digital image provides many conveniences at the internet environment recently. A great number of applications, like Digital Library, Stock Image, Personal Image and Important Information, require the use of digital image. However it has fatal defect which is easy to be modified because digital image is only electronic file. Numerous digital image forgeries have become a serious problem due to the sophistication and accessibility of image editing software. Copy-Move forgery is the simplest type of forgery that involves copying portion of an image and paste it on different location within the image. There are many approaches to detect Copy-Move forgery, but all of them have their own limitations. In this paper, visual and invisible feature based forgery detection techniques are tested and analyzed. The analysis shows that pros and cons of these two techniques compensate each other. Therefore, a hybrid of visual based and invisible feature based forgery detection that combine the merits of both techniques is proposed. The experimental results show that the proposed algorithm has enhanced performance compared to individual techniques. Moreover, it provides more information about the forgery, like identifying copy and duplicate regions.

A Targeted Counter-Forensics Method for SIFT-Based Copy-Move Forgery Detection (SIFT 기반 카피-무브 위조 검출에 대한 타켓 카운터-포렌식 기법)

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyune
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.5
    • /
    • pp.163-172
    • /
    • 2014
  • The Scale Invariant Feature Transform (SIFT) has been widely used in a lot of applications for image feature matching. Such a transform allows us to strong matching ability, stability in rotation, and scaling with the variety of different scales. Recently, it has been made one of the most successful algorithms in the research areas of copy-move forgery detections. Though this transform is capable of identifying copy-move forgery, it does not widely address the possibility that counter-forensics operations may be designed and used to hide the evidence of image tampering. In this paper, we propose a targeted counter-forensics method for impeding SIFT-based copy-move forgery detection by applying a semantically admissible distortion in the processing tool. The proposed method allows the attacker to delude a similarity matching process and conceal the traces left by a modification of SIFT keypoints, while maintaining a high fidelity between the processed images and original ones under the semantic constraints. The efficiency of the proposed method is supported by several experiments on the test images with various parameter settings.

Analysis on Digital Image Composite Using Interpolation (보간을 이용한 디지털 이미지 합성 분석)

  • Song, Geun-Sil;Yun, Yong-In;Lee, Won-Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.3
    • /
    • pp.457-466
    • /
    • 2010
  • In this paper, we propose a new method for detecting digital forgery that identify interpolated region between digital composited images. For detecting the interpolation factor and the tampered regions, we perform two algorithms: The first algorithm is to estimate the interpolation factors using the differential equation for forgery image along the horizontal, vertical, and diagonal directions, respectively; The second algorithm is to scan the interpolation factors along each direction for detection areas as the mask of the optical window size($64{\times}64$) in order to find out the forgery region. A detection map of the forgery is classified with the magnitude of estimated interpolation factors into colors. This detection map can be used to find out interpolated regions from the tampered image. Experimental results demonstrate the proposed algorithms are proven on several examples. We also show the proposed approach is to accurately detect interpolated regions from digital composite images.

Limitations of Spectrogram Analysis for Smartphone Voice Recording File Forgery Detection (스마트폰 음성 녹음 파일 위변조 검출을 위한 스펙트로그램 분석의 한계점)

  • Sangmin Han;Yeongmin Son;Jae Wan Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.545-551
    • /
    • 2023
  • As digital information is readily available to everyone today, the adoption of digital evidence is increasing. However, it is virtually impossible to determine the authenticity of forgery in the case of a voice recording file that has gone through a sophisticated editing process along with the spread of various voice file editing tools. This study aims to prove that forgery, which is difficult to distinguish from the original file, is possible by using insertion, deletion, linking, and synthetic editing technologies in voice recording files. This study presents the difficulty of detecting forgery by encoding a forged voice file with the same extension as the original. In addition, it was shown that forgery detection is impossible if additional transition band deletion and secondary encoding are performed only for experiments in which features occurred. Through this, this study is expected to contribute to the establishment of more stringent evidence admissibility criteria for adopting voice recording files as digital evidence.

Dual Branched Copy-Move Forgery Detection Network Using Rotation Invariant Energy in Wavelet Domain (웨이블릿 영역에서 회전 불변 에너지 특징을 이용한 이중 브랜치 복사-이동 조작 검출 네트워크)

  • Jun Young, Park;Sang In, Lee;Il Kyu, Eom
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.6
    • /
    • pp.309-317
    • /
    • 2022
  • In this paper, we propose a machine learning-based copy-move forgery detection network with dual branches. Because the rotation or scaling operation is frequently involved in copy-move forger, the conventional convolutional neural network is not effectively applied in detecting copy-move tampering. Therefore, we divide the input into rotation-invariant and scaling-invariant features based on the wavelet coefficients. Each of the features is input to different branches having the same structure, and is fused in the combination module. Each branch comprises feature extraction, correlation, and mask decoder modules. In the proposed network, VGG16 is used for the feature extraction module. To check similarity of features generated by the feature extraction module, the conventional correlation module used. Finally, the mask decoder model is applied to develop a pixel-level localization map. We perform experiments on test dataset and compare the proposed method with state-of-the-art tampering localization methods. The results demonstrate that the proposed scheme outperforms the existing approaches.

Detection of Forgery of Mobile App and Study on Countermeasure (모바일 단말기 앱의 위·변조 탐지 및 대응방안 연구)

  • Jung, Hyun Soo;Chae, Gyoo-Soo
    • Journal of Convergence Society for SMB
    • /
    • v.5 no.3
    • /
    • pp.27-31
    • /
    • 2015
  • As the number of smartphone users is increasing with the development of mobile devices, the range of monetary transaction from the individual use is increasing. Therefore, hacking methods are diversified and the information forgery of mobile devices has been a current issue. The forgery via apps in mobile devices is a hacking method that creates an app similar to well-known apps to deceive the users. The forgery attack corresponds to the violation of integrity, one of three elements of security. Due to the forgery, the value and credibility of an app decreases with the risk increased. With the forgery in app, private information and data can be stolen and the financial losses can occur. This paper examined the forgery, and suggested a way to detect it, and sought the countermeasure to the forgery.

  • PDF

Detecting Copy-move Forgeries in Images Based on DCT and Main Transfer Vectors

  • Zhang, Zhi;Wang, Dongyan;Wang, Chengyou;Zhou, Xiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4567-4587
    • /
    • 2017
  • With the growth of the Internet and the extensive applications of image editing software, it has become easier to manipulate digital images without leaving obvious traces. Copy-move is one of the most common techniques for image forgery. Image blind forensics is an effective technique for detecting tampered images. This paper proposes an improved copy-move forgery detection method based on the discrete cosine transform (DCT). The quantized DCT coefficients, which are feature representations of image blocks, are truncated using a truncation factor to reduce the feature dimensions. A method for judging whether two image blocks are similar is proposed to improve the accuracy of similarity judgments. The main transfer vectors whose frequencies exceed a threshold are found to locate the copied and pasted regions in forged images. Several experiments are conducted to test the practicability of the proposed algorithm using images from copy-move databases and to evaluate its robustness against post-processing methods such as additive white Gaussian noise (AWGN), Gaussian blurring, and JPEG compression. The results of experiments show that the proposed scheme effectively detects both copied region and pasted region of forged images and that it is robust to the post-processing methods mentioned above.