• Title/Summary/Keyword: Forest vegetation change

Search Result 360, Processing Time 0.021 seconds

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri (지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성)

  • Kim, Ji Dong;Park, Go Eun;Lim, Jong-Hwan;Yun, Chung Weon
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.113-125
    • /
    • 2018
  • Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.

Change Prediction for Vegetation Structure, Species Diversity and Life-form of Evergreen Broad-leaved Forest by Climate Change in Gageo-Do Island, Korea (기후변화에 따른 가거도 상록활엽수림의 식생 구조, 종 다양성, 생활형의 변화 예측)

  • Lee, Sung-Je;Ahn, Young-Hee
    • Journal of Environmental Science International
    • /
    • v.22 no.8
    • /
    • pp.979-997
    • /
    • 2013
  • This study aims at classifying and interpreting on the vegetation structure, the correlation between a vegetation and an environment, a species diversity and a life-form of Evergreen Broad-Leaved Forest(EBLF) located in Gageo-do Island. It is also the objective that the estimation of vegetation change founded on the species composition and characteristics. The vegetation of EBLF was classified into three forests or four community units as Machilus thunbergii forest (Polystichum polyblepharon-M. thunbergii community and Phaenosperma globosum-M. thunbergii community), Ilex integra-Castanopsis sieboldii community, Quercus acuta community and Neolitsea sericea stand. The ordination analysis by DCA is analogous with the vegetation structure analysis. As a result of the correlation (Pearson's correlation coefficient) with environmental conditions, the Altitude has the significance with the distribution of communities. The total vegetation change by progress of succession will not be wandered away from the present vegetation structure practically, and the vegetation on the underlayers will be a little changed.

A Prediction of Forest Vegetation based on Land Cover Change in 2090 (토지피복 변화를 반영한 미래의 산림식생 분포 예측에 관한 연구)

  • Lee, Dong-Kun;Kim, Jae-Uk;Park, Chan
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.2
    • /
    • pp.117-125
    • /
    • 2010
  • Korea's researchers have recently studied the prediction of forest change, but they have not considered landuse/cover change compared to distribution of forest vegetation. The purpose of our study is to predict forest vegetation based on landuse/cover change on the Korean Peninsula in the 2090's. The methods of this study were Multi-layer perceptrom neural network for Landuse/cover (water, urban, barren, wetland, grass, forest, agriculture) change and Multinomial Logit Model for distribution prediction for forest vegetation (Pinus densiflora, Quercus Spp., Alpine Plants, Evergreen Broad-Leaved Plants). The classification accuracy of landuse/cover change on the Korean Peninsula was 71.3%. Urban areas expanded with large cities as the central, but forest and agriculture area contracted by 6%. The distribution model of forest vegetation has 63.6% prediction accuracy. Pinus densiflora and evergreen broad-leaved plants increased but Quercus Spp. and alpine plants decreased from the model. Finally, the results of forest vegetation based on landuse/cover change increased Pinus densiflora to 38.9% and evergreen broad-leaved plants to 70% when it is compared to the current climate. But Quercus Spp. decreased 10.2% and alpine plants disappeared almost completely for most of the Korean Peninsula. These results were difficult to make a distinction between the increase of Pinus densiflora and the decrease of Quercus Spp. because of they both inhabit a similar environment on the Korean Peninsula.

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.

A Study on the Vulnerability Assessment of Forest Vegetation using Regional Climate Model (지역기후모형을 이용한 산림식생의 취약성 평가에 관한 연구)

  • Kim, Jae-Uk;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.5
    • /
    • pp.32-40
    • /
    • 2006
  • This study's objects are to suggest effective forest community-level management measures by identifying the vulnerable forest vegetation communities types to climate change through a comparative analysis with present forest communities identified and delineated in the Actual Vegetation Map. The methods of this study are to classify the climatic life zones based on the correlative climate-vegetation relationship for each forest vegetation community, the Holdridge Bio-Climate Model was employed. This study confirms relationship between forest vegetation and environmental factors using Pearson's correlation coefficient analysis. Then, the future distribution of forest vegetation are predicted derived factors and present distribution of vegetation by utilizing the multinomial logit model. The vulnerability of forest to climate change was evaluated by identifying the forest community shifts slower than the average velocity of forest moving (VFM) for woody plants, which is assumed to be 0.25 kilometers per year. The major findings in this study are as follows : First, the result of correlative analysis shows that summer precipitation, mean temperature of the coldest month, elevation, soil organic matter contents, and soil acidity (pH) are highly influencing factors to the distribution of forest vegetation. Secondly, the result of the vulnerability assessment employing the assumed velocity of forest moving for woody plants (0.25kmjyear) shows that 54.82% of the forest turned out to be vulnerable to climate change. The sub-alpine vegetations in regions around Mount Jiri and Mount Seorak are predicted to shift the dominance toward Quercus mongolica and Pinus densiflora communities. In the identified vulnerable areas centering the southern and eastern coastal regions, about 8.27% of the Pinus densiflora communities is likely to shift to sub-tropical forest communities, and 3.38% of the Quercus mongolica communities is likely to shift toward Quercus acutissima communities. In the vulnerable areas scattered throughout the country, about 8.84% of the Quercus mongolica communities is likely to shift toward Pinus densiflora communities due to the effects of climate change. The study findings concluded that challenges associated with predicting the future climate using RCM and the assessment of the future vulnerabilities of forest vegetations to climate change are significant.

Long-term Vegetation Change of the Complementary Village Forest after Restoration Project - Centered on the Village Complementary Forest of Wanju Dubang Village - (복원사업 후 마을비보숲의 장기 식생 변화 - 완주군 두방 마을비보숲을 사례로 -)

  • Park, Jae Chul;Du, Wen
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.3
    • /
    • pp.129-139
    • /
    • 2019
  • The purpose of this study is to monitor the long-term vegetation change of the village complementary forest after restoration. Based on the monitoring in 2010, six years after the restoration project in 2004, the monitoring of the complementary forest in Dubang village in 2019 after 9 years was conducted. This study identifies the change of species diversity and structure, growth, vegetation coverage, structural quality etc. and succession through long-term monitoring. For this, field survey was conducted in 2003 and 2010, 2019. The results demonstrate significant increase of species diversity and multi-layer structure and progress of natural succession. Overall, Part I is considered to be a quasi-natural complementary village forest, which has a natural balance between natural vegetation that have remained in nature for a long time and anthropogenic vegetation, revealing the coexistence of nature and humanity. It means ecological structure and function have improved. Part II should be restored to the lost part and adaptive management rather than excessive management should be carried out to leave natural succession.

Assessment of Vegetation Recovery after Forest Fire

  • Yu, Xinfang;Zhuang, Dafang;Hou, Xiyong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.328-330
    • /
    • 2003
  • The land cover of burned area has changed dramatically since Daxinganling forest fire in Northeastern China during May 6 ? June 4, 1987. This research focused on determining the burn severity and assessment of forest recovery. Burned severity was classified into three levels from June 1987 Landsat TM data acquired just after the fire. A regression model was established between the forest canopy closure from 1999 forest stand map and the NDVI values from June 2000 Landsat ETM+ data. The map of canopy closure was got according to the regression model. And vegetation cover was classified into four types according to forest closure density. The change matrix was built using the classified map of burn severity and vegetation recovery. Then the change conversions of every forest type were analyzed. Results from this research indicate: forest recovery status is well in most of burned scars; and vegetation change detection can be accomplished using postclassification comparison method.

  • PDF

Forest Damage Detection Using Daily Normal Vegetation Index Based on Time Series LANDSAT Images (시계열 위성영상 기반 평년 식생지수 추정을 통한 산림생태계 피해 탐지 기법)

  • Kim, Eun-sook;Lee, Bora;Lim, Jong-hwan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1133-1148
    • /
    • 2019
  • Tree growth and vitality in forest shows seasonal changes. So, in order to detect forest damage accurately, we have to use satellite images before and after damages taken at the same season. However, temporal resolution of high or medium resolution images is very low,so it is not easy to acquire satellite images of the same seasons. Therefore, in this study, we estimated spectral information of the same DOY using time-series Landsat images and used the estimates as reference values to assess forest damages. The study site is Hwasun, Jeollanam-do, where forest damage occurred due to hail and drought in 2017. Time-series vegetation index (NDVI, EVI, NDMI) maps were produced using all Landsat 8 images taken in the past 3 years. Daily normal vegetation index maps were produced through cloud removal and data interpolation processes. We analyzed the difference of daily normal vegetation index value before damage event and vegetation index value after event at the same DOY, and applied the criteria of forest damage. Finally, forest damage map based on daily normal vegetation index was produced. Forest damage map based on Landsat images could detect better subtle changes of vegetation vitality than the existing map based on UAV images. In the extreme damage areas, forest damage map based on NDMI using the SWIR band showed similar results to the existing forest damage map. The daily normal vegetation index map can used to detect forest damage more rapidly and accurately.

Bird Species Diversity Analysis According to the Type of Forest Vegetation (산림식생유형에 따른 조류 종다양성 분석)

  • Park, In-Hwan;Kim, Yu-Hoon;Cho, Kwang-Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.6
    • /
    • pp.43-52
    • /
    • 2012
  • For this paper, a study targeting 9 forest patches in Dangjin to suggest for the wild birds, was conducted. The correlation between the emergence of wild birds and the forest vegetation was analyzed, and the patterns of forest vegetation for the improvement of species diversity were suggested by classifying wild birds and foraging guild by the type of forest vegetation. As for the characteristics of the wild birds emerged, more species and bigger population appeared in the vegetation type of mixed stand forest where the natural deciduous broadleaf trees and evergreen needleleaf trees coexisted in the large scale vegetation area. Thus, it was known that the advent of summer migratory birds and resident birds were affected the most by forest patches and vegetation types. As for foraging guild, the larger the forest paches the more the species and the population of the wild birds inhabiting in shrubs and bushes.

The Monitoring of Vegetation Change in Complementary Village Forest according to Management - Centered on Complementary Village Forests of Seochon and Weonyeonjang in Jinan County - (관리에 따른 마을비보숲의 식생 변화 - 진안 서촌 마을비보숲과 원연장 마을비보숲을 사례로 -)

  • Park, Jae Chul;Zhang, Xiao Dong
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • The purpose of this study is on identifying vegetation change through monitoring representative complementary village forests according to different management. For this, two of complementary village forests around Mai mountain which many ones remain were selected. Those are complementary village forests of Seochon and Wonyeonjang. Seochon forest is a representative one which is managed naturally and Wonyeonjang one is a representative one which is managed artificially. The field survey for monitoring was preformed in 2002 and 2007, 2016. D(Dominant degree) and S(Sociability degree) were measured by Brown-Blanquet's method in field survey. Through the analysis and review of survey data, the change of species richness, appearing species characteristics, species composition and layer structure etc. according to different management was monitored. As a result, it can be seen that natural succession has increased species diversity, improved vegetation structure and circulation of complementary village forest. On the other hand, excessive anthropomorphic management was found to be detrimental to the health of the forests and to the vegetation structure and species composition. And it was found that excessive management threaten sustainability and periodical proper management is necessary. Through this review, the useful management direction of complementary village forests was suggested.