DOI QR코드

DOI QR Code

Vegetation Type Classification and Endemic-Rare Plants Investigation in Forest Vegetation Area Distributed by Vulnerable Species to Climate Change, Mt. Jiri

지리산 기후변화 취약수종 분포지의 산림식생 유형 및 희귀-특산식물 분포 특성

  • Kim, Ji Dong (Department of Forest Resources, Kongju National University) ;
  • Park, Go Eun (Forest Ecology and Climate Change Division, National Institute of Forest Science) ;
  • Lim, Jong-Hwan (Forest Ecology and Climate Change Division, National Institute of Forest Science) ;
  • Yun, Chung Weon (Department of Forest Resources, Kongju National University)
  • 김지동 (공주대학교 산림자원학과) ;
  • 박고은 (국립산림과학원 기후변화생태연구과) ;
  • 임종환 (국립산림과학원 기후변화생태연구과) ;
  • 윤충원 (공주대학교 산림자원학과)
  • Received : 2018.02.13
  • Accepted : 2018.04.19
  • Published : 2018.06.30

Abstract

Subalpine zone is geographically vulnerable to climate change. Forest vegetation in this zone is one of the important basic indicator to observe the influence of climate change. This study was conducting phytosociological community classification and endemic-rare plants investigation based on vulnerable species to climate change at the subalpine zone, Mt. Jiri. Vegetation data were collected by 37 quadrate plots from March to October, 2015. In order to understand the species composition of plant sociological vegetation types and the ecological impacts of species, we analyzed the layer structure of vegetation type using important values. Vegetation type was classified into eight species groups and five vegetation units. The vegetation types can be suggested as an indicator on the change of species composition according to the future climate change. There were 9 taxa endemic plants and 17 taxa rare plants designated by KFS(Korea Forest Service) where 41.2% of them were the northern plant. Endemic-rare plants increased as the altitude of vegetation unit increase. Importance value analysis showed that the mean importance value of Abies koreana was highest of all vegetation units. Based on analysis of each layer, all units except vegetation unit 1 were considered to be in competition with the species such as Quercus mongolica and Acer pseudosieboldianum. The results of this study can be a basic data to understand the new patterns caused by climate change. In addition, it can be a basic indicator of long-term monitoring through vegetation science approach.

우리나라의 아고산대는 기후변화에 지역적 취약성을 띄는 지역으로, 아고산대의 산림식생은 기후변화에 따른 영향을 관찰할 수 있는 중요한 기초지표 중 하나이다. 본 연구는 지리산 아고산대의 기후변화 취약수종 분포지의 산림식생을 대상으로 하여 식물사회학적 식생 유형 및 희귀-특산식물 분포 특성에 대해 구명하였다. 2015년 3월부터 10월까지 37개소에서 식생조사를 실시하였고, 식물사회학적 식생유형 분류를 통해 종조성을 파악하고, 종의 우점도를 파악하기 위해 중요치를 이용하여 식생유형별 층위구조를 분석하였다. 그 결과 식생유형분류체계는 8개 종군유형과 5개의 식생단위로 구분되었다. 산림청 지정 특산식물은 9분류군, 희귀식물은 17분류군이 출현하였고, 북방계식물의 비율은 41.2%이며, 식생단위별 해발고도가 증가함에 따라 희귀-특산식물도 함께 증가하는 것으로 나타났다. 중요치 분석 결과, 구상나무는 모든 식생단위에서 평균상대우점치가 높게 나타났다. 또한 층위별로 보았을 때 식생단위 1을 제외한 단위들에서는 신갈나무, 당단풍나무 등의 수종과 경쟁관계에 놓여 있는 것으로 판단되었다. 본 연구의 결과는 기후변화로 인한 아고산대 산림식생의 변화를 이해하기 위한 기초 자료 뿐만 아니라 식생학적 접근을 통한 장기 모니터링의 기초지표로 활용될 것으로 판단되었다.

Keywords

References

  1. An, H.C., Kim, G.T., Choo, G.C., Tae, W.U., Park, S.B. and Park, E.H. 2010. A study on the structure of forest community of Picea jezoensis stands at Cheonwangbong area, Jirisan (Mt.). Journal of Korean Forest Society 99(4): 590-596. (in Korean with English abstract)
  2. Bartemucci, P., Messier, C. and Canham, C.D. 2006. Overstory influences on light attenuation patterns and understory plant community diversity and composition in southern boreal forests of Quebec. Canadian Journal of Forest Research 36(9): 2065-2079. https://doi.org/10.1139/x06-088
  3. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. and Courchamp, F. 2012. Impacts of climate change on the future of biodiversity. Ecology Letters 15: 365-377. https://doi.org/10.1111/j.1461-0248.2011.01736.x
  4. Braun-Blanquet, J. 1964. Pflanzensoziologie Grundzüge der Vegetationkunde (3rd Ed.). Springer-Verlag. New York. pp. 865. (in German)
  5. Brower, J.E. and Zar, J.H. 1977. Field and Laboratory Methods for General Ecology. Wm. C. Brown Company Publishers. Iowa, U.S.A. pp. 596.
  6. Cho, M.G., Chung, J.M., Im, H.I., Noh, I., Kim., T.W., Kim, C.Y. and Moon, H.S. 2016. Ecological characteristics of sub-alpine coniferous forest on Banyabong in Mt. Jiri. Journal of Climate Change Research 7(4): 465-476. (in Korean with English abstract) https://doi.org/10.15531/ksccr.2016.7.4.465
  7. Cullen, N.H., Sirguey, P., Molg, T., Kaser, G., Winlker, M. and Fitzsimons, S.J. 2013. A century of ice retreat on Kilimanjaro: the mapping reloaded. The Cryosphere 7: 419-431.
  8. Curtis, J.T. and McIntosh, R.P. 1951. An upland forest continuum in the prairie forest border region of Wisconsin. Ecology 32(3): 476-496. https://doi.org/10.2307/1931725
  9. Do, M.S., Lee, J.H., Gwon, J.H. and Song, H.K. 2012. Vegetation structure and ecological properties of Picea jezoensis community. CNU journal of agricultural science. 39(4): 525-534. (in Korean with English abstract)
  10. Ellenberg, H. 1956. Aufgaben und Methoden der Vegetationskunde. E. Ulmer. Stuttgart. pp. 136. (in German)
  11. Frankham R., Ballou, J.D. and Briscoe D.A. 2013. A Primer of Comservation Genetics. worldscience. pp. 215.
  12. Grytnes, J.A., Heegaard, E. and Ihlen, P.G. 2006. Species richness of vascular plants, bryophytes, and lichensalong an altitudinal gradient in western Norway. Acta Oecologica 29: 241-246. https://doi.org/10.1016/j.actao.2005.10.007
  13. Hamrick, J.L., Schnabel, A.F. and Wells, P.V. 1994. Distribution of genetic diversity within and among populations of Great Basin conifers. Pages 147-161 in Hager, K.T., St. Clair, L.L., Thome, K.H. and Witters, W.W. editors. Natural History of the Colorado Plateau and Great Basin. University of Colorado Press. Niwot, Colorado, USA.
  14. Han, A.R. 2013. The population structure and regeneration characteristics of Jezo spruce (Picea jezoensis) in the southern part of the Korean Peninsula. Doctoral Dissertation. Seoul National University. pp. 195. (in Korean with English abstract)
  15. Han, S.H., Kim, D.H., Kim, G.N. and Yun, C.W. 2012. Needle life span, photosynthetic pigment and nitrogen allocation of Picea jezoensis in Korea. Journal of Korean Forest Society 101: 62-68. (in Korean with English abstract)
  16. Hegerl, G.C., Zwiers, F.W., Braconnot, P., Gillett, N.P., Luo, Y., Marengo Orsini, J.A., Nicholls, N., Penner J.E. and Stott, P.A. 2007. Understanding and Attributing Climate Change. pp. 663-746. In: Solomon, S. et al. editors. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Cambridge, United Kingdom and New York, U.S.A.
  17. Hill, M.O. 1979. TWINSPAN- A FORTRAN Program for Arranging Multivariate Data in an Ordered Two-Way Table by Classification of the Individuals and Attributes. Cornell University Press. Ithaca, New York. pp. 50.
  18. Hong, S.C., Byen, S.H. and Kim, S.S. 1987. Colored Illustrations of Trees and Shrubs in Korea. Gyemyengsa. Korea. pp. 310. (in Korean)
  19. Juvik, J., Kueffer, C., Juvik, S. and Nagata, S. 2014. Introduction- Losing the high ground: rapid transformation of tropical island alpine and Subalpine environments. Arctic, Antarctic, and Alpine Research 46(4): 705-708. https://doi.org/10.1657/1938-4246-46.4.705
  20. Kim, C.H., Cho, M.G., Kim, J.K., Choi, M.S., Chung, J.M., Kim, J.H. and Moon, H.S. 2012. Vegetation change and growing characteristics of Abies koreana population by altitude in Georim valley of Mt. Jiri. Journal of Agriculture & Life Science 46(1): 1-8. (in Korean with English abstract)
  21. Kim, J.D., Park, G.E., Lim, J.H. and Yun, C.W. 2017. Phytosociological community type classification and flora of vascular plants for the forest vegetation of Daecheongbong area in Mt. Seorak. Journal of Korean Forest Society 106(2): 130-149. (in Korean with English abstract) https://doi.org/10.14578/JKFS.2017.106.2.130
  22. Kim, N.S. and Lee, H.C. 2013. A Study on changes and distributions of Korean fir in sub-alpine zone. J. Korean Env. Res. Tech. 16(5): 49-57.
  23. Kimmins, J.P. 2004. Forest Ecology: A Foundation for Sustainable Forest Management and Environmental Ethics in Forestry. 3rd Ed. Prentice Hall. New Jersey, U.S.A. pp. 611.
  24. Klanderud, K. and Birks, H.J.B. 2003. Recent increases in species richness and shifts in altitudinal distributions of Norwegian mountain plants. Holocene 13(1): 1-6. https://doi.org/10.1191/0959683603hl589ft
  25. Kong, W.S. 2004. Species composition and distribution of native Korean conifers. Journal of the Korean Geographical Society 39(4): 528-543. (in Korean with English abstract)
  26. Kong, W.S. 2006. Biogeography of native Korean Pinaceae. Journal of the Korean Geographical Society 41(1): 73-93. (in Korean with English abstract)
  27. Korea Forest Service. 2010a. Korea Biodiversity Information System. http://www.nature.go.kr/
  28. Korea Forest Service. 2010b. Korea Plant Names Index Committee. http://www.nature.go.kr/kpni/
  29. Korea National Arboretum. 2008. Rare Plants Data Book in Korea. Geobook. Korea. pp. 332. (in Korean)
  30. Korea National Arboretum. 2010. 300 Target Plants Adaptable to Climate Change in the Korea Peninsula. Theulmunhwa. Korea. pp. 492. (in Korean)
  31. Lee, J.H., Shin, H.S., Cho, H.J. and Yun, C.W. 2014. Subalpine Conifer Forest Communities. National Institude of Ecology. GeoBook. Korea. pp. 136.
  32. Lee, K.J., Kwon, J.O. and Kim, J.Y. 2000. Plant community structure in Keolim valley of Chirisan national park. Korean Journal of Environment and Ecology 13(4): 392-403. (in Korean with English abstract)
  33. Lee, T.B. 2003. Coloured Flora of Korea. Hyangmunsa. Korea. pp. 999. (in Korean)
  34. Lee, W.T. and Yim, Y.J. 2002. Plant Geography. Kangwon National University. Korea. pp. 412. (in Korean)
  35. Lindner, M. et al. 2010. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management 259: 698-709. https://doi.org/10.1016/j.foreco.2009.09.023
  36. Lomolino, M.V. 2001. Elevation gradients of species-density: historical and prospective views. Global Ecology & Biogeograhpy 10: 3-13. https://doi.org/10.1046/j.1466-822x.2001.00229.x
  37. Mathys, A.S., Coops, N.C. and Waring, R.H. 2017. An ecoregion assessment of projected tree species vulnerabilities in western North America through the 21st century. Global Change Biology 23: 920-932. https://doi.org/10.1111/gcb.13440
  38. Miyadokoro T., Nishimura, N. and Yamamoto, S. 2003. Population structure and spatial patterns of major trees in a subalpine old-growth coniferous forest, central Japan.
  39. Muller-Dombois, D. and Ellenberg, H. 2002. Aims and Method of Vegetation Ecology. John Wiley & Sons Press. New Jersey, U.S.A. pp. 574.
  40. Nishimura, N., Kato, K., Sumida, A., Ono, K., Tanouchi, H., Iida, S., Hoshino, D., Yamamoto, S-I. and Hara, T. 2009. Effects of life history strategies and tree competition on species coexistence in a sub-boreal coniferous forest of Japan.
  41. Oh, K.K., Jee, Y.K. and Park, S.G. 2000. Dynamic patterns of Abies koreana population in Chirisan national park -central of east area in Chirisan national park-. Korean Journal of Environment and Ecology 13(4): 330-339. (in Korean with English abstract)
  42. Park, S.G., Yi, M.H., Yoon, J.W. and Sin, H.T. 2012. Environmental factors and growth properties of Sasa borealis (Hack.) Makino community and effect its distribution on the development of lower vegetation in Jirisan national park. Korean Journal of Environment and Ecology 26(1): 82-90. (in Korean with English abstract)
  43. Pereira, H.M. et al. 2010. Scenarios for global biodiversity in the 21st century. Science 330: 1496-1501. https://doi.org/10.1126/science.1196624
  44. Ricketts, T.H. et al. 1999. Terrestrial Ecoregions of North America: a conservation assessment. Island Press. Washington, D.C. pp. 471.
  45. Sala, O.E. et al. 2005. Chapter 10: Biodiversity Across Scenarios. pp. 375-408. In: ecosystems and human wellbeing: scenarios, volume 2. Millenium Ecosystem Assesment. Island Press. New York, U.S.A.
  46. Shin, J.H. and Kim, C.M. 1996. Ecosystem classification in Korea(I): ecoprovince classification. FRI Journal of Forest. Science 54: 188-199. (in Korean with English abstract)
  47. Takahashi, K. 1997. Regeneration and coexistence of two subalpine conifer species in relation to dwarf bamboo in the understorey. Journal of Vegetation Science 8: 529-536. https://doi.org/10.2307/3237203
  48. The Intergovernmental Panel on Climate Change (IPCC). 2014. Synthesis report. contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. pp. 151.
  49. Thompson, L.G., Mosley-Thompson, E., Davis, M.E. and Brecher, H.H. 2011. Tropical glaciers, recorders and indicators of climate change, are disappearing globally. Annals of Glaciology 52(59): 23-34. https://doi.org/10.3189/172756411799096231
  50. Tsuyama, I., Higa, M., Nakao, K., Matsui, T., Horikawa, M. and Tanaka, N. 2015. How will Subalpine conifer distributions be affected by climate change? Impact assessment for spatial conservation planning. Regional Environmental Change 15: 393-404. https://doi.org/10.1007/s10113-014-0641-9
  51. Vetaas, O.R. and Grytnes, J.A. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology & Biogeography 11: 2391-301.
  52. Yim, K.B., Park, I.H., and Lee, K.J. 1980. Phytosociological changes of Pinus densiflora forest induced by insect demage in Kyonggi-do Area. Journal of Korean Forest Society 50: 56-71. (in Korean with English abstract)
  53. Yun, C.W. 2016. Field Guide to Trees and Shrubs. Geobook. Korea. pp. 703. (in Korean)
  54. Yun, C.W., Kim, H.J., Lee, B.C., Shin, J.H., Yang, H.M. and Lim, J.H. 2011. Characteristic community type classification of forest vegetation in South Korea. Journal of Korean Forest Society 100(3): 504-521. (in Korean with English abstract)

Cited by

  1. 지리산국립공원 구상나무개체군의 식생구조와 동태 모니터링 vol.35, pp.4, 2018, https://doi.org/10.13047/kjee.2021.35.4.408