• Title/Summary/Keyword: Forest type map

Search Result 197, Processing Time 0.027 seconds

Classification of Land Cover over the Korean Peninsula using MODIS Data (MODIS 자료를 이용한 한반도 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.169-182
    • /
    • 2009
  • To improve the performance of climate and numerical models, concerns on the land-atmosphere schemes are steadily increased in recent years. For the realistic calculation of land-atmosphere interaction, a land surface information of high quality is strongly required. In this study, a new land cover map over the Korean peninsula was developed using MODIS (MODerate resolution Imaging Spectroradiometer) data. The seven phenological data set (maximum, minimum, amplitude, average, growing period, growing and shedding rate) derived from 15-day normalized difference vegetation index (NDVI) were used as a basic input data. The ISOData (Iterative Self-Organizing Data Analysis), a kind of unsupervised non-hierarchical clustering method, was applied to the seven phenological data set. After the clustering, assignment of land cover type to the each cluster was performed according to the phenological characteristics of each land cover defined by USGS (US. Geological Survey). Most of the Korean peninsula are occupied by deciduous broadleaf forest (46.5%), mixed forest (15.6%), and dryland crop (13%). Whereas, the dominant land cover types are very diverse in South-Korea: evergreen needleleaf forest (29.9%), mixed forest (26.6%), deciduous broadleaf forest (16.2%), irrigated crop (12.6%), and dryland crop (10.7%). The 38 in-situ observation data-base over South-Korea, Environment Geographic Information System and Google-earth are used in the validation of the new land cover map. In general, the new land cover map over the Korean peninsula seems to be better classified compared to the USGS land cover map, especially for the Savanna in the USGS land cover map.

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

Analysis of Spatial Information Characteristics for Establishing Land Use, Land-Use Change and Forestry Matrix (Land Use, Land-Use Change and Forestry 매트릭스 작성을 위한 공간정보 특성 고찰)

  • HWANG, Jin-Hoo;JANG, Rae-Ik;JEON, Seong-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.2
    • /
    • pp.44-55
    • /
    • 2018
  • The importance of establishing a greenhouse gas inventory is emerging for policymaking and its implementation to cope with climate change. Thus, it is needed to establish Approach 3 level Land Use, Land-Use Change and Forestry (LULUCF) matrix that is spatially explicit regarding land use classifications and changes. In this study, four types of spatial information suitable for establishing the LULUCF matrix were analyzed - Cadastral Map, Land Cover Map, Forest Map, and Biotope Map. This research analyzed the classification properties of each type of spatial information and compared the quantitative and qualitative characteristics of the maps in Boryeong city. Drawn from the conclusions of the quantitative comparison, the forest area showed the maximum difference of 50.42% ($303.79km^2$) in the forest map and 46.09%($276.65km^2$) in the cadastral map. The qualitative comparison drew five qualitative characteristics: data construction scope difference, data construction purpose difference, classification standard difference, and classification item difference. As a result of the study, it was evident that the biotope map was the most appropriate spatial information for the establishment of the LULUCF matrix. In addition, if the LULUCF matrix is made by integrating the biotope, the forest map, and the land cover map, the limitations of each spatial information would be improved. The accuracy of the LULUCF matrix is expected to be improved when the map of the level-3 land cover map and the biotope map of 1:5,000 covering the whole country are completed.

Spatial Distribution of CO2 Absorption Derived from Land-Cover and Stock Maps for Jecheon, Chungbuk Province (토지피복도와 임상도를 이용한 제천시의 이산화탄소 분포 추정)

  • Jeon, Jeong-Bae;Na, Sang-Il;Yoon, Seong-Soo;Park, Jong-Hwa
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.2
    • /
    • pp.121-128
    • /
    • 2013
  • The greenhouse gas emission according to the energy consumption is the cause of global warming. With various climates, it is occurs the direct problems to ecosystem. The various studies are being to reduce the carbon dioxide, which accounts for more than 80% of the total greenhouse gas emissions. In this study, estimate the carbon usage using potential biomass extracted from forest type map according to land-use by satellite image, and estimate the amount of carbon dioxide, according to the energy consumption of urban area. The $CO_2$ adsorption is extracted by the amount of forest based on the direct absorption of tree, the other used investigated value. The $CO_2$ emission in Jecheon was 3,985,900 $TCO_2$ by energy consumption. At the land cover classification, the forest is analyzed as 624,085ha and the farmland is 148,700ha. The carbon dioxide absorption was estimated at 1,834,850 Tons from analyzed forest. In case of farmland, it was also estimated at 706,658 Tons.

Development of PDA-Based Software for Forest Geographic Information (PDA기반의 산림지리정보 소프트웨어 개발에 관한 연구)

  • Suk, Sooil;Lee, Heonho;Lee, Dohyung
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • This study was done to develop PDA based application system for forest geographic information with GPS. The major results obtained in this study were as follows. A PDA based application program was developed to work on $Microsoft^{TM}$ PocketPC 2002 and 2003 operating system. The screen of PDA displays a 1:25,000 digital topographical map adopted DXF format converted from PC, and the map data with 1:2,500 to 1:30,000 on PDA can be zoomed in or out to five levels. Current position and navigating path received from GPS can be displayed on the screen and be saved in PDA. Information selected among layers of digital topographic map in DXF format can be converted into binary files which can be used on forest geographic information software. This can compress DXF files to 90% in size, and the processing speed of PDA was improved. The forest geographic information management system can be used to manage sample plots on which forest inventory is done, with the help of the sub-menus and grid index values with position information received from GPS. Forest workers can in quire forest geographic information such as forest type, location, forest roads, soil erosion control dams using forest geographic information management system in the field. The forest geographic information management system can provide current position and mobile path information to people who enjoy forest related activities like mountain-climbing, sightseeing, and visiting to historic spots.

Understanding Forest Status of the Korean Peninsula in 1910: A Focus on Digitization of Joseonimyabunpodo (The Korean Peninsula Forest Distribution Map) (1910년 한반도 산림의 이해: 조선임야분포도의 수치화를 중심으로)

  • Bae, Jae Soo;Kim, Eun-Sook
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.3
    • /
    • pp.418-428
    • /
    • 2019
  • The purpose of this study was to analyze and clarify the forest information shown in the Korean Peninsula Forest Distribution Map (KPFDM) printed in 1910. First, the background, process, results, and reliability of the Forest Survey Project (1910), which is the basis of the KPFDM, were evaluated. Next, the information of the KPFDM, preserved as a paper map, was digitized to show forest status and forest type. The results of the analysis can be summarized as follows: Analyzing the Korean peninsula of the 1910 period in terms of the present South and North Korean regions, stocked forests were found to be more widely distributed (73%) in the northern region. The southern region largely consisted of deforested areas, with young-growth trees and unstocked forests making up 80% of all forests there. The northern region had abundant natural forests, with 80% of the forests in Yanggang-do, which currently includes Mt. Baekdu and the Hyesan area, composed of stocked forests. Pinus densiflora was found about 2.7 times more often in the southern region than in the northern region. Large numbers of coniferous trees excluding Pinus densiflora were found in the northern region. In particular, 53% of the forests and 72% of the stocking land in the southern region were composed of Pinus densiflora.

Development of Forest Fire Occurrence Probability Model Using Logistic Regression (로지스틱 회귀모형을 이용한 산불발생확률모형 개발)

  • Lee, Byungdoo;Ryu, Gyesun;Kim, Seonyoung;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • To achieve the forest fire management goals such as early detection and quick suppression, fire resources should be allocated at high probability area where forest fires occur. The objective of this study was to develop and validate models to estimate spatially distributed probabilities of occurrence of forest fire. The models were builded by exploring relationships between fire ignition location and forest, terrain and anthropogenic factors using logistic regression. Distance to forest, cemetery, fire history, forest type, elevation, slope were chosen as the significant factors to the model. The model constructed had a good fit and classification accuracy of the model was 63%. This model and map can support the allocation optimization of forest fire resources and increase effectiveness in fire prevention and planning.

Application of Spatial Analysis Modeling to Evaluating Functional Suitability of Forest Lands against Land Slide Hazards (공간분석(空間分析)모델링에 의한 산지(山地)의 토사붕괴방재기능(土砂崩壞防災機能) 적합도(適合度) 평가(評價))

  • Chung, Joosang;Kim, Hyungho;Cha, Jaemin
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.4
    • /
    • pp.535-542
    • /
    • 2001
  • The objective of this study is to develop a spatial analysis modeling technique to evaluate the functional suitability of forest lands for land slide prevention. The functional suitability is classified into 3 categories of high, medium and low according to the potential of land slide on forest lands. The potential of land slide hazards is estimated using the measurements of 7 major site factors : slope, bed rock, soil depth, shape of slope, forest type and D.B.H. class of trees. The analytic hierarchical process is applied to determining the relative weight of site factors in estimating the potential of land slides. The spatial analysis modeling starts building base layers for the 7 major site factors by $25m{\times}25m$ grid analysis or TIN analysis, reclassifies them and produces new layers containing standardized attribute values, needed in estimating land slide potential. To these attributes, applied is the weight for the corresponding site factor to build the suitability classification map by map algebra analysis. Then, finally, cell-grouping operations convert the suitability classification map to the land unit function map. The whole procedures of the spatial analysis modeling are presented in this paper.

  • PDF

WAVELET-BASED FOREST AREAS CLASSIFICATION BY USING HIGH RESOLUTION IMAGERY

  • Yoon Bo-Yeol;Kim Choen
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.698-701
    • /
    • 2005
  • This paper examines that is extracted certain information in forest areas within high resolution imagery based on wavelet transformation. First of all, study areas are selected one more species distributed spots refer to forest type map. Next, study area is cut 256 x 256 pixels size because of image processing problem in large volume data. Prior to wavelet transformation, five texture parameters (contrast, dissimilarity, entropy, homogeneity, Angular Second Moment (ASM≫ calculated by using Gray Level Co-occurrence Matrix (GLCM). Five texture images are set that shifting window size is 3x3, distance .is 1 pixel, and angle is 45 degrees used. Wavelet function is selected Daubechies 4 wavelet basis functions. Result is summarized 3 points; First, Wavelet transformation images derived from contrast, dissimilarity (texture parameters) have on effect on edge elements detection and will have probability used forest road detection. Second, Wavelet fusion images derived from texture parameters and original image can apply to forest area classification because of clustering in Homogeneous forest type structure. Third, for grading evaluation in forest fire damaged area, if data fusion of established classification method, GLCM texture extraction concept and wavelet transformation technique effectively applied forest areas (also other areas), will obtain high accuracy result.

  • PDF

A study on the Forest inventory work (삼림자원조사법(森林資源調査法)의 연구(硏究))

  • Kim, Kap Duk
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.10-15
    • /
    • 1966
  • 1) The purpose of this study was to compare the forest survey by ground method with that by aerial photo method. 2) In this study, the forest type map was made by use of the radial line plotter and radial line triangulation method. 3) The difference between the area found by the forest type map above mentioned and that by compass surveying on the ground was none-significant. 4) On aerial photo the stratification was carried out very easily. 5) The following sampling methods were applied : line plot method, representative sampling method and stratified random sampling on the aerial photo. 6) In confirming sampling point the line plot method and the representative sampling method were easier than another. 7) As to stands volume the maximum value was given by stratification, and the minimum by line plot method.

  • PDF