• Title/Summary/Keyword: Forest Resource Management

Search Result 216, Processing Time 0.032 seconds

Height-DBH Growth Models of Major Tree Species in Chungcheong Province (충청지역 주요 수종의 수고-흉고직경 생장모델에 관한 연구)

  • Seo, Yeon Ok;Lee, Young Jin;Rho, Dai Kyun;Kim, Sung Ho;Choi, Jung Kee;Lee, Woo Kyun
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.62-69
    • /
    • 2011
  • Six commonly used non-linear growth functions were fitted to individual tree height-dbh data of eight major tree species measured by the $5^{th}$ National Forest Inventory in Chungcheong province. A total of 2,681 trees were collected from permanent sample plots across Chungcheong province. The available data for each species were randomly splitted into two sets: the majority (90%) was used to estimate model parameters and the remaining data (10%) were reserved to validate the models. The performance of the models was compared and evaluated by $R^2$, RMSE, mean difference (MD), absolute mean difference (AMD) and mean difference(MD) for diameter classes. The combined data (100%) were used for final model fitting. The results showed that these six sigmoidal models were able to capture the height-diameter relationships and fit the data equally well, but produced different asymptote estimates. Sigmoidal growth models such as Chapman-Richards, Weibull functions provided the most satisfactory height predictions. The effect of model performance on stem volume estimation was also investigated. Tree volumes of different species were computed by the Forest Resources Evaluation and Prediction Program using observed range of diameter and the predicted tree total height from the six models. For trees with diameter less than 30 cm, the six height-dbh models produced very similar results for all species, while more differentiation among the models was observed for large-sized trees.

Urban Forestry's Scientic System and it's Application to Urban Openspace (都市林學(Urban Forestry)의 學問的 體系와 都市綠地空間에 對한 適用 硏究)

  • Cho, Young-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.3 s.39
    • /
    • pp.171-190
    • /
    • 1990
  • It is the purpose of this study to address how to manage the urban vegitation using the concept of Urban Forestry which is relatively new to Korea. When we consider the Urban Forestry as a science, We should understand it interdisciplinary subject which includes Forestry, Horticulture, Urban Planning, Landscape Design, Landuse Planning, Business and Humanities. It may say that people and tree are the fundermental components of Urban Forestry. So there are two ways of Urban Forestry Applications-How people care for trees and How trees care for People-. For the application, this study places the focus on the monetary valuation, tree inventory system and traditional forestry application to urban forest management. Pubic Relation, Communication, Ordinances and Budget are also mentioned as a part of Urban Forestry Policy. Monetary valuation of trees and forests is very important for the proper cognition of their real value. So that, they may be equated and weighed against conflicting uses which would cause to be removed or severely mutilated. A tree inventory system which is the essential part of urban tree management can provide the pertinent information about the present condition of urban tree resource. It may aid in reducing the subjectivity of tree management decisions and stimulate them to be made rapidly and can help reduce potential municipal liability by identifying serious problems in time for corrective maintenance practices to be applied for the maximize community benefits and minimimize public nuisances or hazards. Managers can derive the information from the inventory and use it for the various management plan. When we see the structure of tree inventory system as one of the data base management system, Computer is the best equipment for the efficient management plan. Public relation and communication is also important factors to care the people for urban vegetation management. Volunteer management system is a good example for the public relation and communication. Those skills are need to develop for using the priceless, valuable human resources. Budget holds the key to the execution of Urban Forestry. Good inventory can provide for efficient budgeting stratiges through it's scientific analysis for the way of maximum benefits and minimum costs. Forest can be play a vital role for the aesthetic improvement and recreation in the city. This study suggests that the traditional sivicultural application not only improve the quality of scenic beauty and recreation but also the products of timber. So it is more needed to study for strong and scientific application to urban forest management.

  • PDF

Automatic Classification by Land Use Category of National Level LULUCF Sector using Deep Learning Model (딥러닝모델을 이용한 국가수준 LULUCF 분야 토지이용 범주별 자동화 분류)

  • Park, Jeong Mook;Sim, Woo Dam;Lee, Jung Soo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1053-1065
    • /
    • 2019
  • Land use statistics calculation is very informative data as the activity data for calculating exact carbon absorption and emission in post-2020. To effective interpretation by land use category, This study classify automatically image interpretation by land use category applying forest aerial photography (FAP) to deep learning model and calculate national unit statistics. Dataset (DS) applied deep learning is divided into training dataset (training DS) and test dataset (test DS) by extracting image of FAP based national forest resource inventory permanent sample plot location. Training DS give label to image by definition of land use category and learn and verify deep learning model. When verified deep learning model, training accuracy of model is highest at epoch 1,500 with about 89%. As a result of applying the trained deep learning model to test DS, interpretation classification accuracy of image label was about 90%. When the estimating area of classification by category using sampling method and compare to national statistics, consistency also very high, so it judged that it is enough to be used for activity data of national GHG (Greenhouse Gas) inventory report of LULUCF sector in the future.

Stochastic Simulation Model of Fire Occurrence in the Republic of Korea (한국 산불 발생에 대한 확률 시뮬레이션 모델 개발)

  • Lee, Byungdoo;Lee, Yohan;Lee, Myung Bo;Albers, Heidi J.
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.1
    • /
    • pp.70-78
    • /
    • 2011
  • In this study, we develop a fire stochastic simulation model by season based on the historical fire data in Korea. The model is utilized to generate sequences of fire events that are consistent with Korean fire history. We employ a three-stage approach. First, a random draw from a Bernoulli distribution is used to determine if any fire occurs for each day of a simulated fire season. Second, if a fire does occur, a random draw from a geometric multiplicity distribution determines their number. Last, ignition times for each fire are randomly drawn from a Poisson distribution. This specific distributional forms are chosen after analysis of Korean historical fire data. Maximum Likelihood Estimation (MLE) is used to estimate the primary parameters of the stochastic models. Fire sequences generated with the model appear to follow historical patterns with respect to diurnal distribution and total number of fires per year. We expect that the results of this study will assist a fire manager for planning fire suppression policies and suppression resource allocations.

Comparison between village characteristics and habitat quality to application OECM in Nakdong-Jeongmaek (낙동정맥 내 OECM 적용 가능 지역 발굴을 위한 마을 특성과 서식지 질 비교)

  • Oh, Ju-Hyeong;Kim, Su-Jin;Kim, Tae-Su;Jang, Gab-Su;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.51-65
    • /
    • 2023
  • The Jeongmaeks are Korea's unique forest space recognition system that diverged from the Baekdudaegan. The Jeongmaeks are easily exposed to pressure because it is adjacent to the living area. Among them, Nakdong-Jeongmaek has high biodiversity, but damage is accelerating. According to the Convention on Biological Diversity (CBD) in 2022, the target is to expand the area of terrestrial and marine protected areas to 30% of national territory by 2030. As of September 2023, the area of terrestrial protected areas in South Korea is only 16.97% of the country's territory. This is due in part to the high proportion of private forests in the region, which makes it difficult to establish protected areas. Therefore, there is a need to establish Other Effective Area-based Conservation Measure (OECMs), which pursue complex and effective conservation that considers multiple values, as an alternative to protected areas. This study aims to identify areas suitable for OECM and to provide opinions on the establishment of appropriate management plans for each value using SOM and InVEST Habitat Quality model. This study evaluated the habitat quality of 206 villages located within 1km of the Nakdong-Jeongmaek and compared the characteristics of villages classified by SOM. As a result, the habitat quality was 0.867 for Tourism village (ClusterIV), 0.838 for Conservation village (ClusterVI), 0.835 for Mixed village (ClusterI), 0.796 for Production (ClusterV), 0.731 for Rural village (ClusterIII) and 0.625 for Urban village (ClusterII). When the distribution was identified through statistical analysis, the Kruskal-Wallis test showed that the distributions were not identical, with a p-value of 1.53e-08. Dunn's test showed a difference between Tourism, Conservation and Rural, Urban village. However, Mixed village was overestimated due to the lack of villages and the small area included in the study area. Moreover, Conservation village was somewhat under-evaluated in the analysis due to the use of a single weight for protected areas. It is necessary to perform additional reinforcement of the value evaluation of Jeongmaeks by conducting Forest Resource Survey and the National Natural Environment Survey. Therefore, we believe that sufficient validity for the establishment of OECMs in the Nakdong-Jeongmaek can be provided by addressing these limitations and conducting additional research.

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo;Ugyen Thinley;Ugyen Dorji
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.2
    • /
    • pp.105-117
    • /
    • 2023
  • Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Forest Resources Statistics of the State of Virginia in USA (미국 버지니아 주 산림자원통계 고찰)

  • Choi, Jung-Kee;Burkhart, Harold E.
    • Journal of Forest and Environmental Science
    • /
    • v.22 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • This study was carried out to compile year 2001 forest resource statistics for the State of Virginia. USA. Virginia has 15.8 million acres (6.4 million ha) of forested 1and, accounting for 62% of the landcover with non-industrial private forest landowners owning 77% of the forested area. Deciduous forests make up 78% of Virginia's forests. Total tree volume is 26.5 billion cubic ft, of which average volume per acre is $1.677ft^3/ac(117m^3/ha)$. The overall annual volume of roundwood output is $543\;million\;ft^3$. Tree growth exceeds removals by $271\;million\;ft^3$ each year for all species statewide. Average net forest land loss in Virginia is 20,000 acre (8,094 ha) per year. In 1999, the forest products industry contributed over $25.4 billion to Virginia's economy while providing over 248,000 jobs. Among forest industries logging contributes to the economy at over $863 million/yr; timber accounts for the greatest amount (28%) of the total market value of Virginia's agricultural crops. Revenue received from stumpage by landowners exceeded $345 million/yr. In their entirety. Virginia's forests provide over $30.5 billion in annual return. including $3 billion for recreation and $1.9 billion for carbon sequestation and pollution control.

  • PDF

Quantifying forest resource change on the Korean Peninsula using satellite imagery and forest growth models (위성영상과 산림생장모형을 활용한 한반도 산림자원 변화 정량화)

  • Moonil Kim;Taejin Park
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.193-206
    • /
    • 2024
  • This study aimed to quantify changes in forest cover and carbon storage of Korean Peninsular during the last two decades by integrating field measurement, satellite remote sensing, and modeling approaches. Our analysis based on 30-m Landsat data revealed that the forested area in Korean Peninsular had diminished significantly by 478,334 ha during the period of 2000-2019, with South Korea and North Korea contributing 51.3% (245,725 ha) and 48.6% (232,610 ha) of the total change, respectively. This comparable pattern of forest loss in both South Korea and North Korea was likely due to reduced forest deforestation and degradation in North Korea and active forest management activity in South Korea. Time series of above ground biomass (AGB) in the Korean Peninsula showed that South and North Korean forests increased their total AGB by 146.4Tg C (AGB at 2020=357.9Tg C) and 140.3Tg C (AGB at 2020=417.4Tg C), respectively, during the last two decades. This could be translated into net AGB increases in South and North Korean forests from 34.8 and 29.4 Mg C ha-1 C to 58.9(+24.1) and 44.2(+14.8) Mg C ha-1, respectively. It indicates that South Korean forests are more productive during the study period. Thus, they have sequestered more carbon. Our approaches and results can provide useful information for quantifying national scale forest cover and carbon dynamics. Our results can be utilized for supporting forest restoration planning in North Korea

The Case Study of Foreign Scenery Inventory Map and the Applicability of Domestic - focused on macro inventory map - (자연경관 경관도의 국외사례 및 국내 적용가능성 연구 - 거시적 경관관리도를 중심으로 -)

  • Joo, Shin-Ha;Lee, Song-Hee
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.3
    • /
    • pp.103-111
    • /
    • 2011
  • The purpose of this study is to review foreign scenic inventory map for the systematic management of natural scenic resources. Several foreign cases were surveyed and analyzed to apply the scenery inventory map in domestic, such as Visual Resource Management(VRM) from United States Bureau of Land Management, Scenery Management System(SMS) from USDA Forest Service and Visual Landscape Inventory(VLI) from British Columbia Ministry of Forest's, that were already established scenery inventory maps. The results are as follows. First, the characteristic of Korean landscape is quite a different from those of north american's, which is much smaller and more complex in topography and land use. So, it would be difficult to apply foreign system directly and we need more researches to our own system. The multi-stepped landscape unit system is highly recommended. Second, scenic quality could be estimated by the pre-built database, such as land forms, vegetation, hydrology and land uses. Historical and cultural attributes should be complemented. Third, existing scenic integrity could be grasped by scenic damage, landscape alteration caused by human activities and land exfoliation. Also, subjective evaluation method should be supplemented by objective criteria through further detailed studies. Finally, about landscape view conditions, landscape control points should be surveyed and established in advance, and viewing distance, viewing frequency, amount of observers and public interests should be considered.

An Economic Feasibility Study of AR CDM project in North Korea (북한 지역을 대상으로 한 조림 CDM 사업의 경제적 타당성 연구)

  • Han, Ki Joo;Youn, Yeo-Chang
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.235-244
    • /
    • 2007
  • Potentials of AR CDM project in North Korea are assessed and feasible land area for AR CDM project is estimated. According to our estimation, There could be 515,000 hectares of forest lands deforested before 1990 in North Korea and 8,854 hectares at the regional level of Gae-sung City, which are eligible for AR CDM project, based on researches of satellite image analyses conducted from 1980's to 1990's. A baseline scenario assumed 44.73 tones of carbon stored in soil per hectare with no vegetation above ground remained during the project period following the default value of IPCC's Good Practice Guidance for LULUCF considering soil structure, climate and land use of the project area. The scenario also assumes that black rocust (Robinia pseudoacacia) is planted and the CDM project is implemented for 20 years. The costs for producing greenhouse gases CER (certified emission reduction) credits include costs of tree planting and forest management, and costs of project negotiation and transactions for issuing the credits. It is estimated that 376 tones of carbon dioxide per hectare can be accumulated and 503 temporary CER credits per hectare and 265 long-term CER credits per hectare could be produced during the project period. It is estimated to cost US$ 4.04 and US$ 7.67 to provide one unit of temporary credit and long-term credit, respectively. These values can be regarded as the cost of conferring emission commitment of a country or a private entity. However, it is not clear which option is better economically because the replacement periods are different in these two cases.