DOI QR코드

DOI QR Code

Spatio-Temporal Projection of Invasion Using Machine Learning Algorithm-MaxEnt

  • Singye Lhamo (Natural Resource Management, College of Natural Resources, Royal University of Bhutan) ;
  • Ugyen Thinley (Environment and Climate Studies, College of Natural Resources, Royal University of Bhutan) ;
  • Ugyen Dorji (Department of Forest Science, College of Natural Resources, Royal University of Bhutan)
  • Received : 2023.03.09
  • Accepted : 2023.05.27
  • Published : 2023.06.30

Abstract

Climate change and invasive alien plant species (IAPs) are having a significant impact on mountain ecosystems. The combination of climate change and socio-economic development is exacerbating the invasion of IAPs, which are a major threat to biodiversity loss and ecosystem functioning. Species distribution modelling has become an important tool in predicting the invasion or suitability probability under climate change based on occurrence data and environmental variables. MaxEnt modelling was applied to predict the current suitable distribution of most noxious weed A. adenophora (Spreng) R. King and H. Robinson and analysed the changes in distribution with the use of current (year 2000) environmental variables and future (year 2050) climatic scenarios consisting of 3 representative concentration pathways (RCP 2.6, RCP 4.5 and RCP 8.5) in Bhutan. Species occurrence data was collected from the region of interest along the road side using GPS handset. The model performance of both current and future climatic scenario was moderate in performance with mean temperature of wettest quarter being the most important variable that contributed in model fit. The study shows that current climatic condition favours the A. adenophora for its invasion and RCP 2.6 climatic scenario would promote aggression of invasion as compared to RCP 4.5 and RCP 8.5 climatic scenarios. This can lead to characterization of the species as preferring moderate change in climatic conditions to be invasive, while extreme conditions can inhibit its invasiveness. This study can serve as reference point for the conservation and management strategies in control of this species and further research.

Keywords

Acknowledgement

We remain grateful to the Bhutan Ecological Society for the financial assistance to carry out field survey and data collection on species records from our study sites. We also thank the College of Natural Resources for providing this opportunity to carry out this research with technical assistance and other facilities such as GPS handsets and ICT facilities. The authors thank Idea Wild for generously providing the laptop and camera.

References

  1. Akins RB, Tolson H, Cole BR. 2005. Stability of response characteristics of a Delphi panel: application of bootstrap data expansion. BMC Med Res Methodol 5: 37.
  2. Amatya S, Yangden K, Wangdi D, Phuntsho Y, Dorji L. 2018. National forest inventory of Bhutan: Shift in role from traditional forestry to diverse contemporary global requirements. J For Livelihood 17: 127-138.
  3. BCCVL. 2021. SDM -Interpretation of model output. https://support.bccvl.org.au/support/solutions/articles/6000127046-sdm-interpretation-of-model-outputs. Accessed 15 Jul 2022.
  4. Bradley BA, Wilcove DS, Oppenheimer M. 2010. Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12: 1855-1872. https://doi.org/10.1007/s10530-009-9597-y
  5. CABI. 2019. Invasive Species Compendium: Ageratina adenophora (Croftonweed). https://www.cabi.org/isc/datasheet/23243. Accessed 15 Jul 2022.
  6. CALIPC. 2022. Ageratina adenophora. https://www.cal-ipc.org/plants/profile/ageratina-adenophora-profile/#:~:text=Ageratina%20adenophora%20(croftonweed%2C%20eupatorium), invasive%20in%20mild%20coastal%20areas. Accessed 30 Jul 2022.
  7. Chahouki MAZ, Sahragard HP. 2016. Maxent modelling for distribution of plant species habitats of rangelands (Iran). Pol J Ecol 64: 453-467. https://doi.org/10.3161/15052249PJE2016.64.4.002
  8. Changjun G, Yanli T, Linshan L, Bo W, Yili Z, Haibin Y, Xilong W, Zhuoga Y, Binghua Z, Bohao C. 2021. Predicting the potential global distribution of Ageratina adenophora under current and future climate change scenarios. Ecol Evol 11: 12092-12113. https://doi.org/10.1002/ece3.7974
  9. Charles H, Dukes JS. 2007. Impacts of invasive species on ecosystem services. In: Biological Invasions (Nentwig W, ed). Springer, Berlin, Heidelberg, pp 217-237.
  10. Chaudhary A, Sarkar MS, Adhikari BS, Rawat GS. 2021. Ageratina adenophora and Lantana camara in Kailash Sacred Landscape, India: Current distribution and future climatic scenarios through modeling. PLoS One 16: e0239690.
  11. Chettri N, Tsering K, Shrestha A, Sharma E. 2018. Ecological vulnerability to climate change in the mountains: a case study from the Eastern Himalayas. In: The Plant Diversity in the Himalaya Hotspot Region (Das AP, Bera S, eds). Bishen Singh Mahendra Pal Singh, Dehradun, pp 707-721.
  12. Chown SL, Hodgins KA, Griffin PC, Oakeshott JG, Byrne M, Hoffmann AA. 2015. Biological invasions, climate change and genomics. Evol Appl 8: 23-46. https://doi.org/10.1111/eva.12234
  13. Cui Y, Okyere SK, Gao P, Wen J, Cao S, Wang Y, Deng J, Hu Y. 2021. Ageratina adenophora Disrupts the Intestinal Structure and Immune Barrier Integrity in Rats. Toxins (Basel) 13: 651.
  14. David KJ. 2012. Ageratina adenophora, in Jepson Flora Project. https://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=735. Accessed 8 Aug 2022.
  15. Dema T. 2009. Equine fatalities from epotorium plant. https://bridgetobhutan.com/blog/2009/02/09/equine-fatalities-from-epotorium-plant/. Accessed 16 Apr 2022.
  16. Dong S, Cui B, Yang Z, Liu S, Liu J, Ding Z, Zhu J, Yao W, Wei G. 2008. The role of road disturbance in the dispersal and spread of Ageratina adenophora along the Dian-Myanmar International Road. Weed Res 48: 282-288. https://doi.org/10.1111/j.1365-3180.2008.00640.x
  17. Dorji T, Yangzom R, Dorji K, Dorji R, Wangmo C, Dorji D, Choden J, Gyeltshen C. 2021. Perception of farmers towards Invasive Alien Plant Species: A case study from Punakha and Samtse Dzongkhags, Bhutan. Biodivers Naturausstattung Himal 7: 89-98.
  18. Elith J, Leathwick JR. 2009. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40: 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159
  19. EPPO. 2023. EPPO Alert List- Ageratina adenophora (Asteraceae). https://www.eppo.int/ACTIVITIES/plant_quarantine/alert_list_plants/ageratina_adenophora?fbclid=IwAR2mSrED2UmNIQdNNDvND_1805U1gvWiB8PEjf3XYZm7Yut8AKmF1tMjks. Accessed 29 Jan 2023.
  20. Fort M. 2015. Impact of climate change on mountain environment dynamics. An introduction. J Alpine Res doi: 10.4000/rga.2877.
  21. Gobeyn S, Mouton AM, Cord AF, Kaim A, Volk M, Goethals PL. 2019. Evolutionary algorithms for species distribution modelling: A review in the context of machine learning. Ecol Modell 392: 179-195. https://doi.org/10.1016/j.ecolmodel.2018.11.013
  22. Graham MH. 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84: 2809-2815. https://doi.org/10.1890/02-3114
  23. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24: 276-292. https://doi.org/10.1111/geb.12268
  24. Guisan A, Thuiller W. 2005. Predicting species distribution: offering more than simple habitat models. Ecol Lett 8: 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
  25. Guo Q, Sax DF, Qian H, Early R. 2012. Latitudinal shifts of introduced species: possible causes and implications. Biol Invasions 14: 547-556. https://doi.org/10.1007/s10530-011-0094-8
  26. Gyeltshen C, Prasad K, Dema S. 2020. Number of species in Bhutan. Conserv Sci Pract 2: e146.
  27. Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ. 2019. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25: 839-852. https://doi.org/10.1111/ddi.12892
  28. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS. 2008. Five potential consequences of climate change for invasive species. Conserv Biol 22: 534-543. https://doi.org/10.1111/j.1523-1739.2008.00951.x
  29. Hijmans RJ, Graham CH. 2006. The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12: 2272-2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x
  30. Hoegh-Guldberg O, Jacob D, Bindi M, Brown S, Camilloni I, Diedhiou A, Djalante R, Ebi K, Engelbrecht F, Guiot J. 2018. Impacts of 1.5 C global warming on natural and human systems. In: Global Warming of 1.5℃. An IPCC Special Report (Masson-Delmotte V, Zhai P, Portner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Pean C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T, eds). IPCC, pp 175-311.
  31. Hoy A, Katel O. 2019. Status of climate change and implications to ecology and community livelihoods in the Bhutan Himalaya. In: Environmental Change in the Himalayan Region (Saikia A, Thapa P, eds). Springer, Cham, pp 23-45.
  32. Keller SR, Taylor DR. 2010. Genomic admixture increases fitness during a biological invasion. J Evol Biol 23: 1720-1731. https://doi.org/10.1111/j.1420-9101.2010.02037.x
  33. Kluge RL. 1991. Biological control of crofton weed, Ageratina adenophora (Asteraceae), in South Africa. Agric Ecosyst Environ 37: 187-191. https://doi.org/10.1016/0167-8809(91)90146-O
  34. Kumar M, Garkoti SC. 2022. Allelopathy effects of invasive alien Ageratina adenophora on native shrub species of chir pine forest in the central Himalaya, India. J For Res 27: 53-62. https://doi.org/10.1080/13416979.2021.2002505
  35. Lamsal P, Kumar L, Aryal A, Atreya K. 2018. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47: 697-710. https://doi.org/10.1007/s13280-018-1017-z
  36. Ma B, Sun J. 2018. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol 18: 10.
  37. Mainka SA, Howard GW. 2010. Climate change and invasive species: double jeopardy. Integr Zool 5: 102-111. https://doi.org/10.1111/j.1749-4877.2010.00193.x
  38. Malla R, Aryal R, Ranabhat S. 2021. Assessment of invasion of Ageratina adenophora in the plantation forest of Nepal. Banko Janakari 31: 3-11. https://doi.org/10.3126/banko.v31i1.37337
  39. McDougall KL, Khuroo AA, Loope LL, Parks CG, Pauchard A, Reshi ZA, Rushworth I, Kueffer C. 2011. Plant invasions in mountains: Global lessons for better management. Mt Res Dev 31: 380-387. https://doi.org/10.1659/MRD-JOURNAL-D-11-00082.1
  40. Merow C, Bois ST, Allen JM, Xie Y, Silander JA Jr. 2017. Climate change both facilitates and inhibits invasive plant ranges in New England. Proc Natl Acad Sci U S A 114: E3276-E3284. https://doi.org/10.1073/pnas.1609633114
  41. Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. 2014. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol Evol 5: 1198-1205. https://doi.org/10.1111/2041-210X.12261
  42. NBC. 2023. Bhutan Biodiversity Portal. https://biodiversity.bt/. Accessed 24 May 2023.
  43. NCHM. 2020. Annual Report 2019-2020. https://www.nchm.gov.bt/attachment/ckfinder/userfiles/files/Annual%20Report%202019.pdf. Accessed 9 Aug 2022.
  44. NEC. 2016. The Fifth National Report National Environment Commission Secretariat Royal Government of Bhutan Thimphu, Bhutan. https://www.cbd.int/doc/world/bt/bt-nr-05-en.pdf. Accessed 15 Apr 2022.
  45. O'Sullivan BM. 1979. Crofton weed (Eupatorium adenophorum) toxicity in horses. Aust Vet J 55: 19-21. https://doi.org/10.1111/j.1751-0813.1979.tb09538.x
  46. Pallewatta N, Reaser JK, Gutierrez AT. 2003. Invasive Alien Species in South Southeast Asia: National Reports & Directory of Resources. Global Invasive Species Programme, Cape Town.
  47. Parker C. 1992. Weeds of Bhutan. Sayce Publishing, London, UK.
  48. Parsons WT, Cuthbertson E. 2001. Noxious weeds of Australia. CSIRO Publishing, Clayton.
  49. Pecchi M, Marchi M, Burton V, Giannetti F, Moriondo M, Bernetti I, Bindi M, Chirici G. 2019. Species distribution modelling to support forest management. A literature review. Ecol Modell 411: 108817.
  50. Peterson AT, Soberon J, Pearson RG, Anderson RP, Martinez-Meyer E, Nakamura M, Araujo MB. 2011. Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press, Princeton, NJ.
  51. Phillips SJ, Anderson RP, Schapire RE. 2006a. Maximum entropy modeling of species geographic distributions. Ecol Modell 190: 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
  52. Phillips SJ, Dudik M, Schapire RE. 2006b. Maxent software for modeling species niches and distributions (Version 3.4.1). https://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed 14 Jul 2022.
  53. Phillips SJ, Dudik M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175. https://doi.org/10.1111/j.0906-7590.2008.5203.x
  54. Poudel A, Jha P, Shrestha B, Muniappan R. 2019. Biology and management of the invasive weed Ageratina adenophora (Asteraceae): current state of knowledge and future research needs. Weed Res 59: 79-92. https://doi.org/10.1111/wre.12351
  55. Poudel AS, Shrestha BB, Joshi MD, Muniappan R, Adiga A, Venkatramanan S, Jha PK. 2020. Predicting the current and future distribution of the invasive weed Ageratina adenophora in the Chitwan-Annapurna Landscape, Nepal. Mt Res Dev 40: R61-R71. https://doi.org/10.1659/MRD-JOURNAL-D-19-00069.1
  56. Pshegusov R, Tembotova F, Chadaeva V, Sablirova Y, Mollaeva M, Akhomgotov A. 2022. Ecological niche modeling of the main forest-forming species in the Caucasus. For Ecosyst 9: 100019.
  57. Qin A, Liu B, Guo Q, Bussmann RW, Ma F, Jian Z, Xu G, Pei S. 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from southwestern China. Glob Ecol Conserv 10: 139-146. https://doi.org/10.1016/j.gecco.2017.02.004
  58. Richardson DM, Rejmanek M. 2011. Trees and shrubs as invasive alien species - a global review. Divers Distrib 17: 788-809. https://doi.org/10.1111/j.1472-4642.2011.00782.x
  59. Rodriguez-Merino A, Garcia-Murillo P, Cirujano S, Fernandez-Zamudio R. 2018. Predicting the risk of aquatic plant invasions in Europe: How climatic factors and anthropogenic activity influence potential species distributions. J Nat Conserv 45: 58-71. https://doi.org/10.1016/j.jnc.2018.08.007
  60. Seldon P. 2019. First ever Bhutan climate report predicts a hotter and wetter Bhutan. The Bhutanese. https://thebhutanese.bt/first-ever-bhutan-climate-report-predicts-a-hotter-and-wetter-bhutan/#:~:text=First%20ever%20Bhutan%20climate%20report%20predicts%20a%20hotter%20and%20wetter%20Bhutan,-Pema%20seldon%2003&text=Bhutan% 20is%20highly%20vulnerable%20to,weather%20and%20 changing%20rainfall%20patterns. Accessed 15 May 2022.
  61. Shrestha UB, Sharma KP, Devkota A, Siwakoti M, Shrestha BB. 2018. Potential impact of climate change on the distribution of six invasive alien plants in Nepal. Ecol Indic 95: 99-107. https://doi.org/10.1016/j.ecolind.2018.07.009
  62. Stocker T. 2014. Climate change 2013- the physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  63. Suberi B, Tiwari KR, Gurung DB, Bajracharya RM, Sitaula BK. 2018. People's perception of climate change impacts and their adaptation practices in Khotokha valley, Wangdue, Bhutan. NISCAIR-CSIR, New Delhi.
  64. Tecco PA, Pais-Bosch AI, Funes G, Marcora PI, Zeballos SR, Cabido M, Urcelay C. 2016. Mountain invasions on the way: are there climatic constraints for the expansion of alien woody species along an elevation gradient in Argentina? J Plant Ecol 9: 380-392. https://doi.org/10.1093/jpe/rtv064
  65. Tererai F, Wood AR. 2014. On the present and potential distribution of Ageratina adenophora (Asteraceae) in South Africa. South Afr J Bot 95: 152-158. https://doi.org/10.1016/j.sajb.2014.09.001
  66. Thapa S, Chitale V, Rijal SJ, Bisht N, Shrestha BB. 2018. Understanding the dynamics in distribution of invasive alien plant species under predicted climate change in Western Himalaya. PLoS One 13: e0195752.
  67. Thiney U, Banterng P, Gonkhamdee S, Katawatin R. 2019. Distributions of alien invasive weeds under climate change scenarios in mountainous Bhutan. Agronomy 9: 442.
  68. Thinley U, Banterng P, Katawatin R, Gonkhamdee S. 2020. Spatial surveillance of invasion by alien species in a heterogeneous ecological landscape. Int J Appl Geospat Res 11: 1-7. https://doi.org/10.4018/IJAGR.2020040101
  69. Thinley U. 2019. Spatial distribution patterns of invasive plants in an ecologically heterogeneous landscape: A modelling approach. Dissertation. Khon Kaen University, Khon Kaen, Thailand. (in Thai)
  70. Wan F, Liu W, Guo J, Qiang S, Li B, Wang J, Yang G, Niu H, Gui F, Huang W, Jiang Z, Wang W. 2010. Invasive mechanism and control strategy of Ageratina adenophora (Sprengel). Sci China Life Sci 53: 1291-1298. https://doi.org/10.1007/s11427-010-4080-7
  71. Wan JZ, Wang CJ. 2018. Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecol Inform 46: 8-18. https://doi.org/10.1016/j.ecoinf.2018.04.004
  72. Wayne G. 2014. The Beginner's Guide to Representative Concentration Pathways. Skeptical Science.
  73. West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J. 2016. Field validation of an invasive species Maxent model. Ecol Inform 36: 126-134. https://doi.org/10.1016/j.ecoinf.2016.11.001