• Title/Summary/Keyword: Forest Management System

Search Result 635, Processing Time 0.022 seconds

A Study on the Nonpoint Source Pollution Management Guideline for Golf Course Construction (골프장 개발에 따른 비점오염 관리를 위한 지침마련에 대한 연구)

  • Im, Sang-Jun;Kim, Sang-Min;Kang, Moon-Seong
    • Journal of agriculture & life science
    • /
    • v.43 no.3
    • /
    • pp.55-62
    • /
    • 2009
  • The objective of this study is to establish the management guideline for golf course construction nonpoint source pollution reduction. For this, the characteristics of nonpoint source pollution from golf course construction and current management status were investigated. Investigated results showed that before and after monitoring for golf course construction sites are necessary as well as during the construction. It is important to focus on erosion and sediment control during the construction. To reduce a nonpoint source pollution from golf course construction, it is necessary to analyze the nonpoint source pollution movement through effective monitoring system and make a effective pollution reduction strategy considering construction stages, origin of the pollution and diverse management practices.

Drainage Analysis for the Anyang-cheon Upper-watershed Management Planning (유역관리계획수립(流域管理計劃樹立)에 관(關)한 기초적(基礎的) 연구(硏究))

  • Woo, Bo Myeong
    • Journal of Korean Society of Forest Science
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 1979
  • Such stream characteristics as the numbers, lengths, orders of stream channels, and drainage density are the essential elements for the analysis of drainages in planning of watershed management in a drainage basin. The drainage net is the pattern of tributaries and master streams in a drainage basin as declineated on a planimetric map. Stream order is a measure of the position of a stream in the hierarchy of tributaries. Density of the drainage is given by the quotient of the cumulative length of stream and the total drainage area. Drainage density then is simply a length per unit of area. In this study, the Anyang-cheon upper-watershed is selected for the survey and analysis of the stream system and drainage density in view point of the useful collection of data for effective watershed management planning. The Anyang-cheon upper-watershed is consisted of about 12,600 hectars of drainage area including the 13 Sub-stream. Total length of the Stream (as described in the Stream Law) in the survey area is measured as much as 71.2km, and that of the Small-stream as descrived in the Saemaul Stream Survey Book (1972) is calculated as 43,010 meters. Besides of this lengths, measured about 43,410 meters of the Small-stream and about 71,900 meters of the Torrential valley through this study. The range of the drainage density among the 13 Sub-streams having sub-watershed is analysed as from 14.79 to 24.10, and average value of drainage density in the entire watershed is calculated as 18.21 in case of including the length of the Torrential valley and 12.50 in case of excluding the same. It is required that the standard classification system in classifing for the characteristics of identification among the Stream, Sub-stream, Small-stream, Torrent, and Torrential valley must be satisfied through joint study of the authorities concerned.

  • PDF

Modification of WASP5 for Ungauged Watershed Management and Its Application (미계측 유역관리를 위한 WASP5 모형의 개선 및 적용성 검토)

  • Kim, Jin-Ho;Shin, Dong-Suk;Kwun, Soon-Kuk
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.29-36
    • /
    • 2007
  • This study was carried out to develop a water quality simulation model for the evaluation of an ungauged watershed. For this purpose, the WASP5 model was selected and modified. The model consists of three sub-models, LOAD-M, DYN-M, and EUT-M. LOAD-M, an empirical model, estimates runoff loadings using point and non-point source data of villages. The Geum River Estuary watershed was selected to calibrate and verify the Modified-WASP5. The LOAD-M model was established using field data of water quality and quantity at the gauging stations of the watershed and was applied to the ungauged watersheds, taking the watershed properties into consideration. The result of water quality simulation using Modified-WASP5 shows that the observed average BOD data from Gongju and Ganggyeong were 2.6 mg/L and 2.8 mg/L, and the simulated data were 2.5 mg/L and 2.4 mg/L, respectively. Generally, simulation results were in good agreement with the observed data. This study focused on formulating an integrated model for evaluating ungauged watersheds. Even though simulation results varied slightly due to limited availability of data, the model developed in this study would be a useful tool for the assessment and management of ungauged watersheds.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Implementing an Adaptive Neuro-Fuzzy Model for Emotion Prediction Based on Heart Rate Variability(HRV) (심박변이도를 이용한 적응적 뉴로 퍼지 감정예측 모형에 관한 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.239-247
    • /
    • 2019
  • An accurate prediction of emotion is a very important issue for the sake of patient-centered medical device development and emotion-related psychology fields. Although there have been many studies on emotion prediction, no studies have applied the heart rate variability and neuro-fuzzy approach to emotion prediction. We propose ANFEP(Adaptive Neuro Fuzzy System for Emotion Prediction) HRV. The ANFEP bases its core functions on an ANFIS(Adaptive Neuro-Fuzzy Inference System) which integrates neural networks with fuzzy systems as a vehicle for training predictive models. To prove the proposed model, 50 participants were invited to join the experiment and Heart rate variability was obtained and used to input the ANFEP model. The ANFEP model with STDRR and RMSSD as inputs and two membership functions per input variable showed the best results. The result out of applying the ANFEP to the HRV metrics proved to be significantly robust when compared with benchmarking methods like linear regression, support vector regression, neural network, and random forest. The results show that reliable prediction of emotion is possible with less input and it is necessary to develop a more accurate and reliable emotion recognition system.

Demand Analysis of Agro-Healing Virtual Reality Therapy System Factors Considering the Characteristics of Respondents (응답자 특성을 고려한 가상 치유농장 시스템 개발요인 수요분석)

  • Koo, Hee-Dong;Kim, Soo-Jin;Bae, Seung-Jong;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 2022
  • A Care farm is known to have positive effects on various people in psychological, physical, and social aspects. However, care farm services for the disabled, transportation disadvantaged, and socially disadvantaged are limited. This study conducted a demand survey in order to provide basic data for development of the Agro-Healing Virtual Reality Therapy(AVRT) system. The respondents were the ordinary person(n=127) and the disabled person(n=72), and the survey items consisted of 4 categories and 20 items, including intention to use AVRT, requirements for use, factors to be considered when developing the system, and content and program preferences. The intention to use a AVRT was found to be at a high level of 80% or more by respondent characteristics. In addition, similar results were shown in all items such as virtual reality experience, willingness to use, appropriate use time, and willingness to pay by respondent characteristics, and correlation by item was determined through correlation analysis. As for the conditions of use, both sides preferred rural types and were found to have the purpose of healing. However, there were concerns about dizziness in common between system use, and in the case of the disabled person, there were difficulties in purchasing expensive equipment. In the development of the AVRT system, the part of sensory priority, important technology level, and color preference were evaluated, and the preference of content and programs to be developed in the system was identified. Fruit, vegetables, flowers, and animals preferred mandarin, tomato, tulips, and dogs first, horticultural healing preferred harvest management for the ordinary person, plant cultivation for the disabled person, and forest healing and animal education preferred walking and dog-related programs. However, agricultural work was found to be a program with high preference for making processed foods for the ordinary person and creating an animal breeding environment for the disabled person. The result of this study is expected to provide reference data that can be suggested for the development of Agro-healing Virtual Reality Therapy system.

Damage Analysis of Korean White Pine Stands in which the Black-tipped Sawfly was Chemically Controlled (잣나무넓적잎벌 방제림분(防除林分)에 대(對)한 잣나무 피해해석(被害解析))

  • Chung, Sang Bae;Kim, Chul Su
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.3
    • /
    • pp.328-333
    • /
    • 1998
  • To obtain basic information for establishing a pest control strategy for insect pest management system, changes in the population densities of the black-tipped sawfly(Acantholyda posticalis posticalis Matsumura) and damage patterns in tree growth were investigated in national forests in Hoigok-ri, Kapyung-gun, Kyunggi-do, where the pest control measures were taken. The results obtained were as follows ; 1. The larval density in the soil of the forests where the insecticides were applied have been kept below economic threshold for about 7 years. The density was the highest in the middle of slopes and similar to the level of the early stage of the insect outbreak. 2. After the pest control by insecticides, reduction in tree height and diameter growth lasted for 2-3 years in trees defoliated by over 70%. 3. The diameter growth of the trees damaged by black-tipped sawfly recovered faster in upper stem than in the lower. 4. volume growth of the trees defoliated over 70% by the insect decreased for three to four years. The volume loss of trees defoliated by 70% and 90% was 19.6% and 54.0%, respectively. 5. Maintaining the rate of defoliation below 50%, which is the economic threshold, by chemical control measures had an effect of reducing the tree volume loss by $40m^2/ha$ as compared with a stand defoliated by 90%.

  • PDF

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Characterization of Stormwater Runoff according to Sewer System in Paldang Watershed (하수도 시스템 유무에 따른 강우유출특성 분석 - 팔당호 유역을 대상으로)

  • Kang, Dong-Han;Sajjad, Raja Umer;Kim, Keuktae;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.142-148
    • /
    • 2016
  • The characterization of stormwater runoff from mix land-use catchments with an inadequate sewer network is a challenge. This study focused on characterizing stormwater runoff from the Paldang watershed area based on land-use type and sewer system coverage. A total of 76 sites were monitored during wet weather from seven different counties within Paldang watershed. Public sewer system (PSS) was installed at 48 sites, while 28 sites had no or individual sewer system (ISS) coverage. The results indicated that the sites included in the ISS group with higher forest and paddy land-use percentage exhibit higher values of average event mean concentrations (EMCs) and first flush intensity for suspended solids (SS), total nitrogen (TN), and total phosphorous (TP). In addition, upgrading runoff interception system can capture 59 % of the TP load in the first 43% of runoff within these sites. Similarly, rainfall depth and storm duration showed a positive correlation (R > 0.6) with nutrient loads within ISS group sites, as compared to PSS group. Therefore, these sites are likely to contribute higher TP and TN loads during heavier storm events and should be selected as priority management areas to combat the problem of eutrophication in Paldang reservoir.