• 제목/요약/키워드: Forecasting administration

검색결과 292건 처리시간 0.024초

Soft Set Theory Oriented Forecast Combination Method for Business Failure Prediction

  • Xu, Wei;Xiao, Zhi
    • Journal of Information Processing Systems
    • /
    • 제12권1호
    • /
    • pp.109-128
    • /
    • 2016
  • This paper presents a new combined forecasting method that is guided by the soft set theory (CFBSS) to predict business failures with different sample sizes. The proposed method combines both qualitative analysis and quantitative analysis to improve forecasting performance. We considered an expert system (ES), logistic regression (LR), and support vector machine (SVM) as forecasting components whose weights are determined by the receiver operating characteristic (ROC) curve. The proposed procedure was applied to real data sets from Chinese listed firms. For performance comparison, single ES, LR, and SVM methods, the combined forecasting method based on equal weights (CFBEWs), the combined forecasting method based on neural networks (CFBNNs), and the combined forecasting method based on rough sets and the D-S theory (CFBRSDS) were also included in the empirical experiment. CFBSS obtains the highest forecasting accuracy and the second-best forecasting stability. The empirical results demonstrate the superior forecasting performance of our method in terms of accuracy and stability.

Development of typhoon forecasting system using satellite data

  • Ryu, Seung-Ah;Chung, Hyo-Sang;Lee, Yong-Seob;Suh, Ae-Sook
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.127-131
    • /
    • 1999
  • Typhoons were known by contributing to transporting plus heat or kinetic energy from equatorial region to midlatitude region. Due to the strong damage from typhoon, we acknowledged the theoretical study and the importance of accurate forecast about typhoon. In this study, typhoon forecasting system was developed to search the tracks of past typhoons or to display similar track of past typhoon in comparison with the path of current forecasting typhoon. It was programmed using Interactive Data Language(IDL), which was a complete computing environment for the interactive analysis and visualization of data. Typhoon forecasting system was also included satellite image and auxiliary chart. IR, Water Vapor, Visible satellite images helped users analyze an accurate forecast of typhoon. They were further refined the procedures for generating water vapor winds and gave an initial indication of their utility for numerical weather prediction(NWP), in particular for typhoon track forecasting where they could provide important information. They were also available for its utility in typhoon tracer or intensity.

  • PDF

인공신경망을 이용한 인스턴트 메신저 선택 예측에 관한 연구 (A study on the forecasting of instant messinger's users choice using neural network)

  • 김동성;김계수
    • 한국품질경영학회:학술대회논문집
    • /
    • 한국품질경영학회 2004년도 품질경영모델을 통한 가치 창출
    • /
    • pp.597-602
    • /
    • 2004
  • This study examined the forecasting of instant messinger's users choice using neural network. We used the statistical methods which were Logistic Regression, MDA(Multiple Discriminant Analysis), and ANN(Artificial Neural Network). In the result, the forecasting performance of the ANN was better than conventional model(Logistic Regression, MDA).

  • PDF

기상청 MOS 예측값 적용을 통한 풍력 발전량 예측 타당성 연구 (Feasibility Study on Wind Power Forecasting Using MOS Forecasting Result of KMA)

  • 김경보;박윤호;박정근;고경남;허종철
    • 한국태양에너지학회 논문집
    • /
    • 제30권2호
    • /
    • pp.46-53
    • /
    • 2010
  • In this paper the feasibility of wind power forecasting from MOS(Model Output Statistics) was evaluated at Gosan area in Jeju during February to Octoberin 2008. The observed wind data from wind turbine was compared with 24 hours and 48 hours forecasting wind data from MOS predicting. Coefficient of determination of measured wind speed from wind turbine and 24 hours forecasting from MOS was around 0.53 and 48 hours was around 0.30. These determination factors were increased to 0.65 from 0.53 and 0.35 from 0.30, respectively, when it comes to the prevailing wind direction($300^{\circ}\sim60^{\circ}$). Wind power forecasting ratio in 24 hours of MOS showed a value of 0.81 within 70% confidence interval and it also showed 0.65 in 80% confidence interval. It is suggested that the additional study of weather conditions be carried out when large error happened in MOS forecasting.

Forecasting Government Bond Yields in Thailand: A Bayesian VAR Approach

  • BUABAN, Wantana;SETHAPRAMOTE, Yuthana
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제9권3호
    • /
    • pp.181-193
    • /
    • 2022
  • This paper seeks to investigate major macroeconomic factors and bond yield interactions in Thai bond markets, with the goal of forecasting future bond yields. This study examines the best predictive yields for future bond yields at different maturities of 1-, 3-, 5-, 7-, and 10-years using time series data of economic indicators covering the period from 1998 to 2020. The empirical findings support the hypothesis that macroeconomic factors influence bond yield fluctuations. In terms of forecasting future bond yields, static predictions reveal that in most cases, the BVAR model offers the best predictivity of bond rates at various maturities. Furthermore, the BVAR model has the best performance in dynamic rolling-window, forecasting bond yields with various maturities for 2-, 4-, and 8-quarters. The findings of this study imply that the BVAR model forecasts future yields more accurately and consistently than other competitive models. Our research could help policymakers and investors predict bond yield changes, which could be important in macroeconomic policy development.

Developing Optimal Demand Forecasting Models for a Very Short Shelf-Life Item: A Case of Perishable Products in Online's Retail Business

  • Wiwat Premrudikul;Songwut Ahmornahnukul;Akkaranan Pongsathornwiwat
    • Journal of Information Technology Applications and Management
    • /
    • 제30권3호
    • /
    • pp.1-13
    • /
    • 2023
  • Demand forecasting is a crucial task for an online retail where has to manage daily fresh foods effectively. Failing in forecasting results loss of profitability because of incompetent inventory management. This study investigated the optimal performance of different forecasting models for a very short shelf-life product. Demand data of 13 perishable items with aging of 210 days were used for analysis. Our comparison results of four methods: Trivial Identity, Seasonal Naïve, Feed-Forward and Autoregressive Recurrent Neural Networks (DeepAR) reveals that DeepAR outperforms with the lowest MAPE. This study also suggests the managerial implications by employing coefficient of variation (CV) as demand variation indicators. Three classes: Low, Medium and High variation are introduced for classify 13 products into groups. Our analysis found that DeepAR is suitable for medium and high variations, while the low group can use any methods. With this approach, the case can gain benefit of better fill-rate performance.

Suggesting Forecasting Methods for Dietitians at University Foodservice Operations

  • Ryu Ki-Sang
    • Nutritional Sciences
    • /
    • 제9권3호
    • /
    • pp.201-211
    • /
    • 2006
  • The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model 1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing, Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured using mean squared error and Theil's U-statistic. This study showed how to project meal counts using 10 forecasting methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed by $na\ddot{i}ve$ 2 and naive 3 models. However, naive model 2 and 3 were recommended for using by dietitians in university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester data were better than the 2000 fall semester data to forecast 2001spring semester data.

Predicting the Performance of Forecasting Strategies for Naval Spare Parts Demand: A Machine Learning Approach

  • Moon, Seongmin
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.1-10
    • /
    • 2013
  • Hierarchical forecasting strategy does not always outperform direct forecasting strategy. The performance generally depends on demand features. This research guides the use of the alternative forecasting strategies according to demand features. This paper developed and evaluated various classification models such as logistic regression (LR), artificial neural networks (ANN), decision trees (DT), boosted trees (BT), and random forests (RF) for predicting the relative performance of the alternative forecasting strategies for the South Korean navy's spare parts demand which has non-normal characteristics. ANN minimized classification errors and inventory costs, whereas LR minimized the Brier scores and the sum of forecasting errors.

A Development Study for Fashion Market Forecasting Models - Focusing on Univariate Time Series Models -

  • Lee, Yu-Soon;Lee, Yong-Joo;Kang, Hyun-Cheol
    • 패션비즈니스
    • /
    • 제15권6호
    • /
    • pp.176-203
    • /
    • 2011
  • In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.