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Suggesting Forecasting Methods for Dietitians
at University Foodservice Operations

Kisang Ryu§
Lester E. Kabowff School of Hotel, Restaurant, and Tourism Administration, University of New Orleans,
New Orleans 7048, U.S.A.

The purpose of this study was to provide dietitians with the guidance in forecasting meal counts for a
university/college foodservice facility. The forecasting methods to be analyzed were the following: naive model
1, 2, and 3; moving average, double moving average, simple exponential smoothing, double exponential smoothing,
Holt's, and Winters' methods, and simple linear regression. The accuracy of the forecasting methods was measured
using mean squared error and Theil's U- statistic. This study showed how to project meal counts using 10 forecasting
methods for dietitians. The results of this study showed that WES was the most accurate forecasting method, followed
by naive 2 and naive 3 models. However, naivemodel 2 and 3 were recommended for using by dietitians in
university/college dining facilities because of the accuracy and ease of use. In addition, the 2000 spring semester
data were better than the 2000 fall semester data to forecast 2001spring semester data.
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INTRODUCTION

Forecasting especially plays a crucial role in college
and university foodservice operations because of the
perishable nature of food products and their non-profit
nature. Also, food menu items are prepared immediately
prior to service to customers.” There is no room for
inventory, storage, or holding of the finished product beyond
demand levels. Forecasting in the college and university
foodservice industry affects food production, customer
satisfaction, employee morale, manager confidence,
inventory, staffing, sanitation, and financial status.>”
Inaccurate forecasting resultsin over-production or
under-production. Finally, inaccuracy in forecasting leads
to increased costs and decreased customer satisfaction.

In general, college and university foodservice organizations
require foodservice managers or dietitians to keep tight
control of costs. In the college and university foodservice
industry, the task of forecasting is usually done by dietitians
or foodservice managersf‘) Having a good forecast of meal
counts helps dietitians to plan and control. They use
historical data, including past production information and
past customer counts, to forecast customer demand. Based
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on the historical data and variables, dietitians frequently
employ intuitive guesses and naive methods compared
to mathematical forecasting methods.””” Mathematical
methods and computers have been neglected because both
had reputations of being difficult to understand. However,
increased utilization of personal computers facilitates the
use of computers for forecasting. Research has also
indicated that forecasting is an important tool for dietitians
of foodservice operations and that continuing training is
necessary in the college and university foodservice industry.”
For instance, Jang et al. suggested that educational training
of forecasting needs for the purpose of helping them acquire
a knowledge related to self-development and duty for
dietitians.” Simple quantitative techniques, such as naive
methods, might outperform the intuitive assessments of
experts.” However, manually generated naive models
generally produce less accurate forecasts compared to
computerized mathematical models.” Efficiently computerized
mathematical forecasting methods will help institutional
foodservice management control or even reduce costs in
addition to increased customer satisfaction.

Despite the importance of forecasting®, it has gained
little attention by practitioners and researchers within
university foodservice operations. Thus, this study aimed
to fill this research gap by introducing forecasting
models that can be used for a university foodservice
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facility. The purpose of this study was to provide
dietitians with the guideline to forecast meal counts for
a university or college foodservice operation. This study
compared different forecasting models with two data
sets: the 2000 spring semester data and the 2000 fall
semester data. Both data sets were used to forecast meal
counts for the 2001 spring semester. The specific
purposes of this study were to: (1) draw the attention
of forecasting withinthe university/college foodservice
operation; (2) identify the most accurate forecasting
method to project meal counts for the 2001 spring
semester; (3) suggest the most appropriate forecasting
technique for dietitians; and (4) discover whether the
2000 spring semester data is better than the 2000fall
semester data to forecast meal counts for the 2001 spring
semester.

REVIEW OF LITERATURE

The Importance of Forecasting in College and

University Operations

Forecasting plays an important managerial function in
college and universityorganizations. Accurate forecasting
not only helps foodservice managers or dietitians (hereafter,
dietitians) control food costs, labor costs, and inventory
costs, but also improves customer satisfaction.”™”™

Controlling Food Costs

Dietitians in the college/ university foodservice industry
should keep tight controls of costs. Having a good forecast
of customer demand will help managers to control or even
reduce costs.™*”® Particularly, over-estimation of customer
demand leads to overproduction and results in extra costs.
The problem with over-forecasting is the cost of unused
prepared foods in addition to labor costs. Re-handling and
discarding menu items are also hidden costs of
over-forecasting.

Improving Customer Satisfaction

Customer satisfaction is affected by forecasting>*"® When
forecasts are not accurate, under-forecasting might occur.
This under- forecasting leads to underproduction.
This makes customers unhappy because they do not
receive their food choices. The cost of under-forecasting
may seem to be minor, but the cost of losing customets
is critical. The result of under-production might be more
harmful than over-production because under-production

results in losing market share by décreasing customer
satisfaction.

Controlling Labor Costs

Controlling costs through effective labor scheduling
can be a challenge. To staff correctly, a dietitian must
have an accurate forecast of both how many customers
can be expected during the meal periods and when the
customers will be there during the meal periods. Labor
scheduling is the act of balancing customer demand,
employee work requests, and profitability.lo) Having too
few employees can lead to poor customer service,
overworked employees, and the loss of market share. On
the other hand, having too many employees reduces
operating margins. Labor costs are a large portion of the
total costs under a dietitian’s control in the foodservice
industry.

Controlling Inventory Costs

Controlling inventory requires significant cost control."”
Inventory accumulation is based on the forecast of expected
demand. Inaccurate forecasting generates some problems.
Having too much inventory requires too much of an
investment, ties up assets, and creates space constraints
in the distribution centers. On the other hand, if the
operation reduces inventory to more manageable levels,
it sometimes experiences shortages of certain menu items,
which disappoint customers and cause a loss in market
share. Consequently, inventory reduction by accurate
forecasting is critical to controlling operating costs.

Accuracy of Forecasting Methods

Accuracy is the criterion which determines the best
forecasting method, so that accuracy is the most
important concern in evaluating the quality of a forecast.
The goal of the forecasts is to minimize error. Forecast
error is the difference between an actual value and its
forecast value.”>”*'? The formula is given as follows:

e.=Y.-F ¢))

where e, = forecast error in time period t; Y, = actual value
in time period t; F, =forecast value in time period t.

Some research has suggested using MSE and U-statisticto
evaluate accuracy, if all errors are of relatively the same
magnitude."”
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Mean Squared Error (MSE)

The mean squared error (MSE) is one generally accepted
technique for evaluating the exponential smoothing methods
as well as other methods.”” The equation is as follows:

I
MSE=- 3 Y,— F,)* )

where Y, = actual value in time period t; F, = forecast
value in time period t; n = number of periods.

This measure defines error as the sum of squares of
the forecast errors when divided by the number of periods
of data.

U-Statistic

Theil’s U-statistic allows a relative comparison of the
forecasting approaches with naive methods.””"® Naive
models are used as the basis for making comparisons
against which the performance of more sophisticated
methods are judged. A modified U-statistic based on the
root mean square error (RMSE) was employed in this
study. The U-statistic is computed as the ratio of RMSE
from a forecasting method to the RMSE of the naive
method.'” The formula is as follows:

RMSE=1 ﬁ:l\/ (Y,—F) 3)

where F; is forecast for period t, Y; actual demand
that occurred in period t, and n number of forecast
observations in the estimation period.

U = RMSE of the forecasting method

4
/ RMSE of the naive method @

The ranges of the U-statistic can be expressed as

follows:

U = 1: the naive approach is as good as the forecasting
technique being evaluated.

U < 1:the forecasting technique being used is better
than the naive approach.

U > 1: there is no reason to use a formal forecasting
method, since using a naive method will
generate better results.

The smaller the U-static, the better the forecasting

technique used is, compared to the naive method. The
closer the U-statistic is to 0, the better the method.

METHODOLOGY

This study evaluated different forecasting models using
meal count data from a dining center at a Midwestern
University. Data from two semesters the 2000 spring
semester and the 2000 fall semester were collected and
were used to forecast the meal counts of the 2001 spring
semester. Then actual data of the 2001 spring semester
were used to test accuracy. There were several steps for
the adjustment of data. First, data for a semester consisted
of 17 weeks of meal counts. The weeks that had more
than two sets of missing data in a week due to closure
of the dining center were deleted in order to exclude from
the database of incomplete weeks. Second, since the
forecasting models being developed were intended for typical
situations, the database was analyzed to detect abnormalities
in the data. In this research, abnormalities in the data were
considered when there was either extremely high or low
value of data based on the day of the week due to special
circumstances. Then data with special circumstances were
adjusted by days of the week. Finally, the adjustment for
the effect of changes in population was considered.

1. Forecasting Methods

After data was adjusted and compiled into a spreadsheet,
forecasting the 2001 spring semester was implemented
using 10 different forecasting methods with the 2000 spring
semester data and the 2000 fall semester data, respectively.
Computations were done using Microsoft Excel®.

Ndive Methods

In this research, three naive models were used as follows:
naive 1 (the simplest naive model with one day of lag),
naive 2 (the naive model including weekly seasonality with
one week of lag), and naive 3 (the naive model including
weekly seasonality with one semester of lag).

Naive 1. The naive 1 method uses data from the
previous day to forecast the current day (one day of lag).

Fi1 =Y, (5)

where
F..1= forecast value for the next period
Y, = actual value at period t

To start the forecast using naive model 1, the last day
of the 2000 spring semester or the 2000 fall semester
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was used to forecast the first day of the 2001 spring
semester. For instance, using the 2000 fall semester to
forecast the 2001 spring semester, the meal count of the
last day (126) was used to forecast the first day
(Monday) of the 2001 spring semester (see Table 1). To
forecast the second day (Tuesday) of the 2001 spring
semester, the actual meal count of Monday was needed.
In this case, the actual meal count was 230, and was
used for the forecast for Tuesday. Note that this model
does not allow forecasting two days in advance.

Frse1 =Y -~
F79 = Y73 = 126

As the actual meal count for the first Monday of the
2001 spring semester was 230, the forecasting error for
Monday was 104 (e= 230-126) (see Table 1).

Table 1. Naive 1 forecast using the 2000 fall semester data as a

base

Year Week Day t Y: Fy [

2000 13 Monday 73 209
Tuesday 74 250
Wednesday 75 240
Thursday 76 244
Friday 77 145
Saturday 78 126

2001 i Monday 79 230 126 104
Tuesday 80 296 230 66
Wednesday 81 245 296 -51
Thursday 82 297 245 52
Friday 83 167 297 -30
Saturday 84 169 167 3

Naive 2. The naive 2 method considers weekly
seasonality by using data from the previous week to
forecast the current week (one week of lag).

Fl+1 = Yr -5 (6)

Here Y.s is the actual data one week before the current
week. Equation 6 makes forecasts based on data that are
one week old. To forecast the first week of the 2001
spring semester, the last week of the 2000 spring
semester or the 2000 fall semester has to be used. For
instance, when the 2000 fall semester data were used
for forecasting, the number of meal counts of the last
week of the 2000 fall semester corresponded to the

forecast of the first week of the 2001 spring semester
(see Table 2). Since the meal count for the last Monday
of the 2000 fall semester was 209, the forecast for the
first Monday of the 2001 spring semester would be 209.

Frge1 =Y .5
F7g = Y73 = 209

As the actual meal count for the first Monday of the
2001 spring semester was 230, the forecasting error for
Monday was 21 (e = 230-209) (see Table 2).

Table 2. Naive 2 forecast using the 2000 fall semester data as

a base

Year  Week Day t Y F, e

2000 13 Monday 73 209
Tuesday 74 250
Wednesday 75 240
Thursday 76 244
Friday 77 145
Saturday 78 126

2001 1 Monday 79 230 209 21
Tuesday 80 250
Wednesday 81 240
Thursday 82 244
Friday 83 145
Saturday 84 126

Naive 3. In the naive 3 method, the data of the same
week for the 2000 fall semester was used to forecast
the corresponding week of the 2001 spring semester (one
semester of lag).

Fl+1 = Y|.77 (7)

Here Y.77 is the actual data one semester before the
current semester. For instance, the meal count of the first
Monday for the 2000 fall semester was used to forecast
the first Monday of the 2001 spring semester.

Frg1= Yo . 77
Frg =Y, =258

As the actual meal count for the first Monday of the
2001 spring semester was 230, the forecasting error for
Monday was -28 (e = 230 - 258) (see Table 3).
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Table 3. Naive 3 forecast using the 2000 fall semester data as

a base

Year  Week Day t Y, Fi e

2000 13 Monday 1 258
Tuesday 2 257
Wednesday 3 277
Thursday 4 245
Friday 5 171
Saturday 6 109

2001 1 Monday 79 230 258 -28
Tuesday 80 257
Wednesday 81 277
Thursday 82 245
Friday 83 171
Saturday 84 109

Simple Moving Average Method

The moving average is concemmed with more recent
observations. As each new observation becomes available,
a new mean is calculated by adding the newest value and
dropping the oldest one.'” The moving average method
for smoothing a time-series is highly dependent on n, the
number of terms selected for constructing the average. In
this study, forecasts with different # were determined, with
ranges from n =2 to n =7 in order to select the optimal
n. For instance, when a 3-day moving average (n = 3) was
considered, the forecast for the first Monday of the
2001spring semester was calculated based on equation 8.

Frge1 = (Y + Y77 + Y7s341)/ 3

8
Fro= n+Yr+Y)/3=(126 + 145 + 244)/3 =172 ®

Table 4. Forecasting with simple moving average method (n=3)
using the 2000 fall semester data as a base

Year  Week Day t Y Fy e
2000 13 Monday 73 209
Tuesday 74 250
Wednesday 75 240
Thursday 76 244
Friday 77 145
Saturday 78 126
2001 1 Monday 79 230 172 58
Tuesday 80 296 167 129
Wednesday 81 245
Thursday 82 297
Friday 83 167
Saturday 84 169

Fui = (Yot Y+ Yot + Yo/

As the actual meal count for the first Monday of the
2001 spring semester was 230, the forecasting error was
58 (e = 230-172) (see Table 4). The determination of the
optimal n was included in Results section.

Double Moving Average Method

The use of the double moving average method should
be used to forecast time series data that have a linear
trend.'” Forecasting with a double moving average
requires determining two averages. The first moving
average is determined similarly to the one in the simple
moving average. After the first moving average is
computed, a second moving average is calculated. For
instance, the forecast for the first Tuesday of the 2001
spring semester was calculated using equations 9 to 13
with 2000 fall semester data and n = 3.

The first moving average was computed using equation 9.

Mi=Yi+Ys+ Y= (126 + 145 + 244) / 3=172
Mr=Y7+Y%+ Yys=(145+244 + 240) /3= 210 (9)
Mis =Y+ Y75 + Y= (244 + 240 + 250) / 3 = 245

Equation 10 was used to calculate the second moving
average.

M7= (M7 + Mg+ Myy) /3

0
= (172 + 210 + 245) / 3= 209 (19

Equation 11 was used to develop a forecast by getting
the difference between moving averages.

a73=2M73-M’73=2(172)-209= 135 (11)

Equation 12 was used as an additional adjustment
factor.

brg =2/ (3-1) M3 - M’78) = (1) (172-209) = -37 12)

Finally, the forecast for one period ahead (p = 1) with
double moving average was obtained using equation 13.

Frse1 = a7+ bss * p =135+ (-37) (1) = 98 (13)

Observe that you need (2n - 1) days of data in order
to start using this method.
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Table 5. Forecasting with double moving average method (n = 3)
using the 2000 fall semester data as a bas

Mcal Value of Value

Year Week  Day t Counts M M a b K
2000 13 Monday 73 209

Tuesday 74 250

Wednesday 75 240

Thusday 76 244 245

Friday 7T 145 210

Saturday 8 126 172 200 135 -37
2000 1 Monday 9 230 98

Tuesday 80 2%

Wednesday 81 245
Thusday 8 297
Friday 8 167
Saturday 84 169

M = Fior = (Yt Yoi+ Yot o+ Yo )/n; M = (MM +Moa+ - +Mine)/n

Simple Exponential Smoothing Method

Exponential smoothing approach is easy to use and
capable of producing reliable forecasts.'” The simple
exponential smoothing method is based on smoothing past
values of a series in an exponential technique. The
observations are weighted, with more weight being given
to the more recent observations. Equation 14 was used to
forecast in the simple exponential smoothing method. An
initial value of Ft, the old smoothed value, was needed
to start the forecast. There are several approaches to
determine the initial value. One approach is to set the first
estimate equal to the first observation; that is, F; = Y;.
Another approach is to use the average of the first five
or six observations for the initial smoothed value. In this
study, the first approach was employed (see Table 6).

The accuracy of the simple exponential smoothing
method strongly depends on the optimal value of alpha
(a). A traditional optimization method based on the lowest
MSE was used to determine the optimal alpha value. Then,
the alpha was used in forecasting. For instance, to forecast
2000 fall semester data using a= 0.1, F; was assumed
to be Y), in this case 258 (see Table 6). The forecasts
for the next couple of periods were the following:

Table 6. Forecasting with simple exponential smoothing method
(a=.1) using the 2000 fall semester data as a base

Year Week Day - t Ml k
2000 1 Monday 1 258 258
Tuesday 2 257 258
Wednesday 3 n 2579
Thursday 4 245 259.8
Friday 5 171
Saturday 6 109

Fu1 = aYt+ (1-0) F
Fir =aY, +(1-0) F
Fa = (0.1) (258) + (1 - 0.1) (258) = 258 (14)
Fs = (0.1) 257) + (1 - 0.1) (258) = 257.9

Fi=(0.1) 277y + (1 - 0.9) (257.9) = 259.8

Forecasts based on exponential smoothing methods
assume the continuation of non-random historical patterns
into the future.'” When the continuation of the non-
random historical pattern is broken, the accuracy of the
exponential smoothing method is greatly reduced. Thus,
it isimportant to detect changes in non-random historical
patterns. A tracking signal was used to monitor changes
in the pattern. As long as a forecast fell within a range
of permissible deviations of the forecast from actual
values, no change in alpha was necessary. But, if a forecast
fell outside the range, the system indicated the possibility
of updating alpha value. In this study, the researcher used
limits set of + 2 standard deviations of the forecast 2V ySE)
that gives a 95% chance that the actual observation will
fall within the limits (see Figure 1).

Fig. 1 Tracking Signal with Exponential Smoothing Forecasting Error
(a= .022)

Double Exponential Smoothing Method

The double exponential smoothing method is recom-
mended for forecasting time series data that have a linear
trend.'” The equations from 15 to 19 were used for the
double exponential smoothing. In this research, to start
forecasting, the initial values of A, and A’ were considered
equal to the first observation. Table 7 shows that Y, =
A=A’ =258 was used as the initial value. For instance,
the forecast for the first Tuesday of the 2000 spring semester
was calculated as follows:
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As=aYy+ (1-a) Ay as)
= (0.5) (300) + (1-0.5) 258 =279
A =0 A+ (1‘(1) A’ (16)
= (0.5) (279) + (1-0.5) 258 = 268.5
a,=2A,-A=2(279) - 268.5 =289.5 a7n
b2 =Qa (Az-A’z)/(l-(l) (18)

=0.5(279-268.5)/0.5 = 10.5

For =22+ by (p) = 289.5 + 10.5 (1) = 300 19)

Table 7. Forecasting with double exponential smoothing method
(a= .5) using the 2000 fall semester data as a base

Ly=Y2+ (1-a) (Lo + T2) 20)
=0.1 *300 + (1-0.1) (258 + 0) = 262

T, = [3 (Lz - Lz.]) + (1-(1) T (21)
=(0.1) (262-258) + (1-0.1) (0) = 0.4

Fori=L,+ (1) T, =262 +0.4=262.4 22)

Table 8. Forecasting with Holt’s method (a= .1 and 8= .1) using
the 2000 fall semester data as a base

Value Value Forecast

b
t Meal Count A, A’ of a of b atbp

1 258 258 258 258 0 258
2 300 279 2685 2985 10.5 258
3 279 300
4 244
5 196
6 178

A, = exponentially smoothed value of Y, at time t;
Ar=aYH(1-0) A A’ = aA+(1-0) A’y a=2A-A’; bi=a (A-AT)/(1-0)

As in the simple exponential smoothing, the accuracy
of the forecasting method highly depends on the optimal
value of alpha. The one generating the lowest MSE value
was selected as the optimal alpha. Also, a tracking
system was developed to monitor the change of patterns.

Holt’s Method

Holt’s method smoothes the trend and slope directly
by using different smoothing constants, alpha (a) and beta
([3).12) The equations from 20 to 22 were used to forecast
using the Holt’s method. The initial values for the smoothed
series and the trend must be set to start the forecasts.'®
There are several methods used to determine the initial
values to use in the forecast. In this study, the first estimate
of the smoothed series was to set equal to the first
observation. Then, the trend was estimated to equal zero.
The first observation, 258, corresponded to the first
estimate of the smoothed series (Y. =L, =258). Also T,
=0 wasused as the initial value (see Table 8). For example,
the forecast for the first Tuesday of the 2000 spring semester
was calculated as follows:

T Meal Counts Lt Tt Ft

1 258 258 0 258

2 300 262 0.4 258

3 279 262.4
4 244

5 196

6 178

L, = new smoothed value; T, = trend estimate; L, = aY+(1-a) (Lo 1+Te1);
T, =B (Li-Le)*(1-B) Tuy; Fep = LitpT,

Accuracy of Holt’s exponential smoothing method
requires optimal values of alpha (a) and beta (3). The
optimal and values were selected on the basis of minimizing
the MSE.

Winter’s Method

Winter’s method not only considers trend but also
considers seasonality.l3) This seasonality estimation is
provided as a seasonal index. Equations from 23 to 26
were used to forecast with Winter’s method. To start the
forecasts, the initial values of the smoothed series L, the
trend T, and the seasonal indices S; must be given. In
this research, the first estimate of the smoothed series
was set equal to the first observation. Then, the trend
was estimated to be equal to zero and the seasonal indices
wereset to 1.0. First 6 new smoothed values were
considered the same as the first 6 observations. Then,
the first 6 trend estimates were set as zero. The first six
seasonality indices were assigned as the value, one (see
Table 9). For example, the forecast for the second Monday
of the 2000 spring semester was calculated as follows:

Ly=a*Y7/S76+ (1-a) (L7 + T71) 23)
=0.19 * 284/1 + (1-0.19) (178+0) = 198

T7=B@L7-Lwy + (1-B) * Ty 4)
=0.01 * (198-178) + (1-0.01) *0=0.2
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S7=Y*Y7/L7+(1— Y)*S7-6 (25)
=0.19 *284/198 + (1-0.19) * 1 = 1.08
Frai=(Ls+p*T7) ™ Sreep 26)
=(198+1*0.2)*S,=198.8

The accuracy of Winter’s method depends on the
optimal values of alpha (a), beta (8), and gamma (7). The
optimal q, 3, and y were determined by minimizing a
measure of forecast error of MSE.

Simple Linear Regression

Simple linear regression isused to estimate the nature
of the relationship between a dependent variable and an
independent variable. It involves predicting the variable

Table 9. Forecasting with Winter’s method (a= .19, B= .01, and
y= .19) using the 2000 fall semester data as a base

T Yt Lt Tt St Ft

1 258 258 0 1

2 300 300 0 1

3 279 279 0 1

4 244 244 0 1

5 196 196 0 1

6 178 178 0 1

7 284 198 0.2 1.08

8 198.8

Y. = new observation or actual value of series in period t; A, = new smoothed
value; T, = trend estimate; S, = scasonal estimate; A, = ¥¢/Se+(1-a)(Ar A+ Toy);
T, = ﬁ(Al‘Al-l)+(l‘B) T, Sc= YY1/A1+(1'Y) Se1; F:+p = (A[+pT.) S|7L+p

Y based on knowledge of the variable X. Two regression
models were used to forecast the 2001 spring semester.
In the first case, data from the 2000 spring semester were
used in the regression analysis. The regression model
required information about meal counts (Y) and about the

time (X) of the data. A confidence level of 95% wasused
in the analysis. The resulting model was significant (F( 7,
=7.84, p = 0.0065). The coefficient of determination (R?)
was .094, indicating that the model explained 9.4 percent
of the variance. The estimate of the 3 coefficient (3;) was
-0.767 with ¢-value = -2.80 and p-value = .0065. Finally,
the forecasting model was Y, = 245.01-0.767 X. This model
was used to forecast the 2001 spring semester. Similarly,
data from the 2000 spring semester were used in the same
way to create a forecasting model. The forecasting model
was Y, =226.32-0.214 X. Then, this model was used to
forecast the 2001 spring semester.

RESULTS AND DISCUSSION

Naive 1 model considers the last actual datum available
as the forecast for the next day. As the number of meal
counts at the dining center studied changes according
to the day of the week, this method did not obtain good
accuracy. For instance, the meal counts in the 2000 spring
semester generally decreased from Monday to Saturday
(M >T>W >TH >F > Sa). This effect induces a bias
in the forecast, creating over-forecasting errors. When
the 2000 spring semester was used as a base, naive 1
model had the second worst accuracy (MSE = 5,070;
U-statistic = 3), as shown in Table 10. When the 2000
fall semester was used as a base, similar results occurred
with this method (MSE= 4,993; U-statistic = 2.83). These
results demonstrate that when the 2000 spring semester
data was used as a base to forecast the 2001 spring
semester, the forecasting errors were larger than those
in the corresponding 2000 fall semester data.

Naive 2 model considers seasonality by using the last
week of data to forecast the next week. Since the data

Table 10. Forecast accuracy using the 2000 spring and fall semester data as a base

2000 Spring Semester

2000 Fall Semester

MSE U-Statisti Rank Best to Worst MSE U-Statisti Rank Best to Worst
Naive 1 5070 3.00 9 4993 2.83 10
Naive 2 563 1.00 2 625 1.00 2
Naive 3 604 1.04 3 908 1.21 3
MA (n=7) 2901 227 5 2845 2.13 4
DMA (n=6) 2932 2.28 6 2967 2.18 6
SES (a= .017) 3054 2.33 8 3054 221 8
DES (a= .007) 3000 2.35 7 3000 2.19 7
HES (a= .002; = .088) 2853 2.25 4 2861 2.14 5
WES (a= .19; B= .01; y= .19) 427 0.87 1 431 0.83 1
LR 6865 3.49 10 3210 2.27 9

MA =moving average; DMA = double moving average; SES = simple exponential smoothing; DES = double exponential smoothing; HES = Holt’s method;
WES = Winter’s method; LR = lincar regression; MSE = mean squared error; U-statistic = Theil’s U-statistic. The minimal etrors are in bold.
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in this research considered weekly seasonality, naive 2
had smaller errors. When the 2000 spring semester was
used as a base, this method had the third smallest MSE
(563), as shown in Table 10. Because of the small MSE,
naive 2 was used as the reference for the U-statistic, so
the value of the U-statistic was 1. When the 2000 fall
semester was used, similar outcomes occurred with this
method (MSE = 625). Naive 2 model was also ranked as
the 3 most accurate method. In naive 2, the 2000spring
semester data was better than the 2000 fall semester data
to forecast the 2001 spring semester.

Naive 3 model was a modified version of naive 2
because it considered seasonality but had a lag of one
semester. That is, the first week of data of the semester
base was used to forecast the first week of the 2001
spring semester. When the 2000 spring semesterwas used
as a base, naive 3 had good accuracy and ranked the
4™ (MSE = 604, U-statistic = 1.04), as shown in Table 10.
Even though this method obtained good accuracy, it was
not as good as naive 2. Similarly, using the 2000 fall
semester as a base, this method produced small errors (MSE
=908, U-statistic = 1.21), ranking this method in fourth
place. These results showed that the 2000 spring semester
data produced smaller errors than the 2000 fall semester
data as a base to forecast the 2001 spring semester.

Several moving average models (MA) with different
n were tested and the model with n="7 produced the
smallest MSE(2,845) as shown in Table 11. When the
2000 spring semester was used as a base, MA was one
of the least accurate methods (MSE = 2,901, U-statistic
=2.27), as shown in Table 10. Since the value of the
U-statistic is larger than one, this method does not
outperform the naive 2 model and should not be used
for this application. When the 2000 fall semester was
used as a base, MA (n =7) was the most accurate method
among the forecasting methods that did not consider
seasonality pattern. MA (n=7) obtained the smallest
errors (MSE = 2,845, U-statistic =2.13). These results
showed that the 2000 fall data was better than the 2000
spring data for forecasting the 2001 spring semester.

Several double moving averages with different n were
tested, and the optimal model (n = 6) was the one with
the smallest MSE. When the 2000 spring semester was

Table 11. The resulis of MSE with different # using moving average
on the 2000 spring semester data

n=2 n=3 n=4 n=5 n=6 n=7 n=8

MSE 5450 5013 4902 4141 2966 2901 3334

n=number of terms in the moving average;
MSE = Mean Squared Error. The minimal error is in bold.

used as a base, DMA produced large errors (MSE = 2,932,
U-statistic = 2.28), as shown in Table 10. This is due
to the fact that DMA did not consider seasonality and
the data did not have a linear trend pattern. Similarly,
when the 2000 fall semester was used as a base, DMA
(n = 6) also produced large errors (MSE = 2,967,
U-statistic =2.18). In the DMA, the 2000 spring semester
data was a little bit better than the 2000 fall semester
data to forecast the meal counts of the 2001 spring
semester.

Table 12 shows that when optimal was .017, simple
exponential smoothing model (SES) obtained the minimum
error (MSE= 3,054) using the 2000 spring semester as
a base. In this research, SES (a= .017) had large errors
(MSE= 3,054; U-statistic = 2.33), as shown in Table 10,
because it did not consider seasonality. When the 2000
fall semester was used as a base, the optimal a was .022
because the minimum error (MSE = 3,054) was obtained
with value, .022. SES (a= .022) was the third least accurate
(MSE= 3,054; U-statistic = 2.21). In the SES, there was
no difference between spring and fall semesters based
on MSE and U-statistic.

Table 12. Optimal alpha (@) with simple exponential smoothing
method using the 2000 spring semester data

a Jd .01 015 .016 017 .018 .019 .02 .03

2 3

MSE 3285 3134 3058 3055 3054 3055 3057 3060 3112 3505 3755

a = smoothing constant (0 < a < 1);
MSE = Mean Squared Error. The optimal alpha is in bold.

In this research, double exponential smoothing (DES)
had large errors (MSE =3,000; U-statistic = 2.35) using
the 2000 spring semester as a base when optimal a was
.007 (see Table 10). Because DES does not consider
seasonality patterns, this method was not appropriate for
the time series data with seasonality. Similarly, when the
2000 fall semester was used as a base, DES was the
fourth least accurate (MSE = 3,000, U-statistic = 2.19).
These results showed that the value of MSE and
U-statistic were the same in both semesters.

Holt’s exponential smoothing method (HES) performed
best among those methods that were not designed for
seasonal data. When the 2000 spring semester was used
as a base, the smallest error was obtained when alpha
was .002 and beta was .088 respectively. HES had an
error of 2,853 as measured by MSE. Even though this
method only considered the trend pattern, HES generated
better accuracy than did MA, DMA, SES, DES, and LR
(see Table 10). When the 2000 fall semester data was
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used as a base, similar results occurred. HES was the
sixth most accurate method (MSE = 2,861, U-statistic =
2.14). In this HES method, spring semester data was
a little bit better than fall semester data for forecasting
the meal counts of the 2001 spring semester.
Winter’s exponential smoothing method (WES) provides
a useful way to consider seasonality when the time-series
data has a seasonal pattern. The smallest MSE was obtained
when alpha was .19, beta was .01, and gamma was .19
using the 2000 spring semester as a base. WES (MSE
= 427; U-statistic = 0.76) was the second most accurate
because it considered seasonality (see Table 10). Similarly,

when the 2000 fall semester was used as a base, WES -

generated the second most accurate forecast (MSE = 431,
U-statistic = 0.83) because this method considered
seasonality. Just as in the case using the 2000 fall semester
as a base, the optimal a, B, and y were .11, .04, and
.17, respectively. These results demonstrated that the 2000
spring data was a little bit better than the 2000 fall data
for forecasting the 2001 spring semester.

In real-life situations, identifying the relationship
between two variables as in simple linear regression is
not frequently appropriate because more than one
independent variable is usually necessary to predict a
dependent variable accurately. In this research, linear
regression (LR) was the method with the largest error
when spring semester was used (MSE = 6,965 U-statistic
= 3.49), as shown in Table 10, perhaps because it only
included one variable and did not capture the change
induced by the season. When the 2000 fall semester was
used as a base, LR was the second least accurate method
(MSE = 3,210; U-statistic = 2.27). These results showed
that the 2000 fall semester data was much better than
the 2000 spring semester data for forecasting the 2001
spring semester.

Table 10 shows WES obtained the smallest value of
U-statistic (0.87) among the 11 forecasting methods
when the 2000 spring semester data was used. Naive 2
(U-statistic = 1) was the second most
forecasting method followed by naive 3 (U-statistic =
1.04). The result of U-statistic showed that only WES
was better than the naive approaches (naive method 2
and naive method 3). Since using the naive methods,
which are the simplest methods, generates better results,
there is no reason to use the other forecasting methods
except WES. LR was the least accurate forecasting
method (U-statistic = 3.49). Similarly, only WES (0.83)
was better than naive approaches on the basis of
U-statistic when the 2000 fall semester data was used.
Thus, in terms of U-statistic, only WES was better than

accurate

naive models in both semesters.

In conclusion, based on accuracy, the best method was
WES, followed by naive 2 and naive 3. Naive 2 and
naive 3 were the second and the third most accurate
forecasting method in using both spring and fall semesters
to forecast the 2001spring semester. Because of the obvious
weekly seasonality pattern, WES, naive 2, and naive 3
could produce much better accuracy than other methods
that did not consider seasonality pattern in both spring
and fall semesters.

Most of the forecasting methods using the 2000 spring
semester as a base generated better accuracy than did
forecasting methods using the 2000 fall semester as a
base. In other words, overall, the 2000 spring semester
data was better than the 2000 fall semester data to
forecast the 2001 spring semester data. This fact implies
that same season data can be better than different season
data to execute forecasts. It might be that there is a
change in the behavior of students between different
seasons that affects the students’attendance in dining
centers. For instance, female students might skip meals
in order to lose weight and fit into swimming suits during
the spring semester. Perhaps the nice weather induces
students to eat outside.

CONCLUSIONS

This study was attempted to help dietitians acquire
knowledge related to forecasting meal countsthrough
education for a university or college foodservice industry.
The findings of this study showed that Winter’s method
obtained the best accuracy. However, it may not be
considered as the most appropriate forecasting method
due to its complexity in practice. In the case of institutional
foodservice operations, special consideration is required
concerning ease of use of the method since the person
in charge of forecasting usually has little time and little
knowledge in some instances to implement the forecasts.
The easeof use of the forecasting methods is sometimes
far more important than the accuracy of the forecasting
methods in practice. Thus, appropriate naive methods are
recommended for using by dietitians in university/college
dining facilities. Not only were naive method 2 and 3
the second and third most accurate models, but they were
also the simplest models to implement. Some research
has noted that naive models produce less accurate
forecasts than do computerized mathematical models.>”
In this study, the simplest methods, naive 2 and naive
3, outperformed all the forecasting methods implemented
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except for Winter’s method.

In addition, the 2000 spring semester data were better
than the 2000 fall semester data to forecast 2001 spring
semester data. Previous studiessuggested using spring
semester data to forecast spring semester and fall
semester data to forecast fall semester.” The outcome
of this research supports their findings. Even though the
2001 fall semester data was more recent than the2000
spring semester data in forecasting the 2001 spring
semester, spring semester data generated better accuracy
than did fall semester data.

The forecasting models used in this study were designed
to forecast normal demand situations. Thus, forecasting
for special demands (extremely high or low) due to many
kinds of variables was not considered. Many real-life
forecasting situations are more complicated and difficult
due to such variables as weather, food menu items, special
student activities, holidays, and money availability.
Therefore, it is recommended that foodservice dietitians
apply appropriate quantitative methods, such as naive
methods, with acceptable judgment, common sense, and
experience, in order to obtain better forecasting accuracy.

A useful future study might use the data of several
dining centers, and identify whether the best forecasting
method at one dining center is also the best in other
dining facilities. The results of the present study showed
that the 2000 spring semester data was better than the
2000 fall semester data for forecasting the 2001 spring
semester. This may indicate that same season data is
better than different season data in implementing
forecasts. Further research may forecast fall semester to
identify whether previous fall semester data is better than
previous spring semester data.
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