• Title/Summary/Keyword: Forecasting Ability

Search Result 106, Processing Time 0.027 seconds

The Nonparametric Estimation of Interest Rate Model and the Pricing of the Market Price of Interest Rate Risk (비모수적 이자율모형 추정과 시장위험가격 결정에 관한 연구)

  • Lee, Phil-Sang;Ahn, Seong-Hark
    • The Korean Journal of Financial Management
    • /
    • v.20 no.2
    • /
    • pp.73-94
    • /
    • 2003
  • In general, the interest rate is forecasted by the parametric method which assumes the interest rate follows a certain distribution. However the method has a shortcoming that forecasting ability would decline when the interest rate does not follow the assumed distribution for the stochastic behavior of interest rate. Therefore, the nonparametric method which assumes no particular distribution is regarded as a superior one. This paper compares the interest rate forecasting ability between the two method for the Monetary Stabilization Bond (MSB) market in Korea. The daily and weekly data of the MSB are used during the period of August 9th 1999 to February 7th 2003. In the parametric method, the drift term of the interest rate process shows the linearity while the diffusion term presents non-linear decline. Meanwhile in the nonparametric method, both drift and diffusion terms show the radical change with nonlinearity. The parametric and nonparametric methods present a significant difference in the market price of interest rate risk. This means in forecasting the interest rate and the market price of interest rate risk, the nonparametric method is more appropriate than the parametric method.

  • PDF

An Experiment : Distribution of the Adversity Quotient as a Reduction of Bias in Estimating Earnings

  • Riza PRADITHA;Lasty AGUSTUTY;Robert JAO;Andi RUSLAN;Nur AISYAH;Diah Ayu GUSTININGSIH
    • Journal of Distribution Science
    • /
    • v.21 no.6
    • /
    • pp.99-106
    • /
    • 2023
  • Purpose: This study aims to analyze the distribution of the role of adversity quotient in the estimation bias of future earnings. Adversity quotient is a cognitive ability that can be distributed as a reducer of bias effects that occur in profit forecasting or investment decision making. Research design, data and methodology: The study designs a full factorial within-subject 2×3 as a laboratory experiment. The study subjects are 30 accounting students who are proxied as investors. Results: The results show that the estimated earnings made by investors experience anchoring-adjustment heuristic bias which means the initial value becomes a basic belief that influences the decisions taken by investors. However, this study also provides evidence that heuristic bias can be reduced by the presence of adversity quotient. Investors who have high adversity ability are abler to reduce the estimation bias when compared to investors who have medium and low adversity ability so the higher the difficulty ability possessed by investors, the less likely the occurrence of bias in decision making. Conclusion: Thus, the adversity quotient is proven to be distributed as a reducing opportunity from the bias that will occur in estimating future earnings or making investment decisions.

A Flood Damage Preventation and Permanent Restoration Method (수해 예방과 항구적인 복구 방안)

  • 구본충
    • Journal of the Korean Professional Engineers Association
    • /
    • v.32 no.6
    • /
    • pp.94-99
    • /
    • 1999
  • Recently, flood damage is rapidly increasing because of warming of globe, urbanization and industrialization. As a countermeasure to prevent these flood damages, it is quite required to extend the flood control ability by improving the objective rivers in the watershed and building more medium to large scale reserviors. Simultaneously repairing and rehabilitation of facilities through the safety diagnosis for reinforcement of the facilities should be continuously proceeded. Also extensive implementation of drainage improvement, establishment of prevention and refairing system against flood damage and raise of accuracy of weather forecasting should be proceeded.

  • PDF

Development and Application of the Photosynthesis Experimental Module Based on Scientist's Inquiry Processes (과학자의 탐구 과정을 재구성한 광합성 실험 모듈의 개발과 적용)

  • Kim, Ho-Gi;Kim, Yeon-Ju;Kim, Sung-Ha
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.204-220
    • /
    • 2011
  • This study was intended to develop an experimental module based on inquiry processes conducted by photosynthesis scientists. It was aimed to enhance scientific inquiry ability of the middle school students by applying the developed module. Developed module included some experiments conducted by earlier photosynthesis scientists such as Helmont, Woodward, Priestly, Hales and Ingen-Hausz. Inquiry process was involved in the developed module for instructing the inquiry methods. Rapid-cycling Brassica rapa known as a Fast Plant was used for the experimental material. Developed module was applied to the experimental group consisting 27 eighth grader, while experiments suggested in the science textbook was applied to the control group consisting 30 eighth grader. Developed module was more effective in improving students' scientific inquiry ability, especially measuring, forecasting and hypothesizing ability as its subordinate elements. When the result of post-test was compared to one of pre-test in the experimental group, their observing, forecasting, and generalization ability were improved. Experimental group showed that students' conception in photosynthesis and conceptual development related with the role of plants in the ecosystem and plant's food and movement of the water and nutrients were also improved. Before application, students in the experimental group did not have enough understanding of the abstract concept such as the existence or the role of the materials like $CO_2$ or $O_2$ or the energy accumulation. Developed module could help students to achieve the comprehensive concept regarding the role of plants as producers of organic matter and oxygen and to enhance their scientific inquiry ability and concepts regarding photosynthesis.

  • PDF

The presumption that breakdown characteristics of $SF_6$ used to the Neural Network (인공신경망을 이용한 $SF_6$ 절연파괴 전압 추정)

  • Choi, Eun-Hyuck;Kim, Tae-Eun;Lim, Chang-Ho;Park, Yong-Kwon;Choi, Sang-Tae;Lee, Kwang-Sik
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.421-423
    • /
    • 2007
  • The paper used to the Neral Netwok for a forecasting conservation system A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. The true power and advantage of neural network lies in their ability to represent both linear and non-linear relationships and in their ability to learn these relationships directly from the data being modeled. Form results of this study, the Neral Netwok is will play an important role for insulation diagnosis system of real site GIS and power equipment using $SF_6$ gas.

  • PDF

The presumption that breakdown characteristics of Dry-Air used to the Neural Network (인공신경망을 이용한 Dry-Air 절연파괴 전압 추정)

  • Choi, Eun-Hyeok;Kim, Tae-Eun;Choi, Sang-Tae;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1428-1429
    • /
    • 2007
  • The paper used to the Neral Netwok for a forecasting conservation system. A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. The true power and advantage of neural network lies in their ability to represent both linear and non-linear relationships and in their ability to learn these relationships directly from the data being modeled. Form results of this study, the Neral Netwok is will play an important role for insulation diagnosis system of real site GIS and power equipment using Dry-Air gas.

  • PDF

Predicting Recessions Using Yield Spread in Emerging Economies: Regime Switch vs. Probit Analysis (금리스프레드를 이용한 신흥경제 국가의 불황 예측: 국면 전환 모형 vs. 프로빗 모형)

  • Park, Kihyun;Mohsin, Mohammed
    • International Area Studies Review
    • /
    • v.16 no.3
    • /
    • pp.53-73
    • /
    • 2012
  • In this study we investigate the ability of the yield spread to predict economic recessions in two Asian economies. For our purpose we use the data from two emerging economies (South Korea and Thailand) that are also known for their openness in terms of exports and imports. We employ both two-regime Markov-Switching model (MS) and three-regime MS model to estimate the probability of recessions during Asian crisis. We found that the yield spread is confirmed to be a reliable recession predictor for Thailand but not for South Korea. The three-regime MS model is better for capturing the Asian financial crisis than two-regime MS model. We also tried to find the duration of economic expansions and recessions. We tested the hypothesis of asymmetric movements of business cycles. The MS results are also compared with that of the standard probit model for comparison. The MS model does not significantly improve the forecasting ability of the yield spread in forecasting business cycles.

Bankruptcy Forecasting Model using AdaBoost: A Focus on Construction Companies (적응형 부스팅을 이용한 파산 예측 모형: 건설업을 중심으로)

  • Heo, Junyoung;Yang, Jin Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • According to the 2013 construction market outlook report, the liquidation of construction companies is expected to continue due to the ongoing residential construction recession. Bankruptcies of construction companies have a greater social impact compared to other industries. However, due to the different nature of the capital structure and debt-to-equity ratio, it is more difficult to forecast construction companies' bankruptcies than that of companies in other industries. The construction industry operates on greater leverage, with high debt-to-equity ratios, and project cash flow focused on the second half. The economic cycle greatly influences construction companies. Therefore, downturns tend to rapidly increase the bankruptcy rates of construction companies. High leverage, coupled with increased bankruptcy rates, could lead to greater burdens on banks providing loans to construction companies. Nevertheless, the bankruptcy prediction model concentrated mainly on financial institutions, with rare construction-specific studies. The bankruptcy prediction model based on corporate finance data has been studied for some time in various ways. However, the model is intended for all companies in general, and it may not be appropriate for forecasting bankruptcies of construction companies, who typically have high liquidity risks. The construction industry is capital-intensive, operates on long timelines with large-scale investment projects, and has comparatively longer payback periods than in other industries. With its unique capital structure, it can be difficult to apply a model used to judge the financial risk of companies in general to those in the construction industry. Diverse studies of bankruptcy forecasting models based on a company's financial statements have been conducted for many years. The subjects of the model, however, were general firms, and the models may not be proper for accurately forecasting companies with disproportionately large liquidity risks, such as construction companies. The construction industry is capital-intensive, requiring significant investments in long-term projects, therefore to realize returns from the investment. The unique capital structure means that the same criteria used for other industries cannot be applied to effectively evaluate financial risk for construction firms. Altman Z-score was first published in 1968, and is commonly used as a bankruptcy forecasting model. It forecasts the likelihood of a company going bankrupt by using a simple formula, classifying the results into three categories, and evaluating the corporate status as dangerous, moderate, or safe. When a company falls into the "dangerous" category, it has a high likelihood of bankruptcy within two years, while those in the "safe" category have a low likelihood of bankruptcy. For companies in the "moderate" category, it is difficult to forecast the risk. Many of the construction firm cases in this study fell in the "moderate" category, which made it difficult to forecast their risk. Along with the development of machine learning using computers, recent studies of corporate bankruptcy forecasting have used this technology. Pattern recognition, a representative application area in machine learning, is applied to forecasting corporate bankruptcy, with patterns analyzed based on a company's financial information, and then judged as to whether the pattern belongs to the bankruptcy risk group or the safe group. The representative machine learning models previously used in bankruptcy forecasting are Artificial Neural Networks, Adaptive Boosting (AdaBoost) and, the Support Vector Machine (SVM). There are also many hybrid studies combining these models. Existing studies using the traditional Z-Score technique or bankruptcy prediction using machine learning focus on companies in non-specific industries. Therefore, the industry-specific characteristics of companies are not considered. In this paper, we confirm that adaptive boosting (AdaBoost) is the most appropriate forecasting model for construction companies by based on company size. We classified construction companies into three groups - large, medium, and small based on the company's capital. We analyzed the predictive ability of AdaBoost for each group of companies. The experimental results showed that AdaBoost has more predictive ability than the other models, especially for the group of large companies with capital of more than 50 billion won.

The effect of managerial ability on income smoothing (경영자 능력이 이익유연화에 미치는 영향)

  • Lee, Eun-Ju
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.157-166
    • /
    • 2020
  • Firms perform various actions that affect management performance measurement by managing the volatility and capital cost of reported income through income smoothing. This study attempted to analyze with a focus on the relationship between managerial competence and income smoothing. Therefore, this study attempted to analyze and focus on the relationship between managerial competency and profit softening using a measure of managerial competency presented in Demerjian et al. (2012). The results of the analysis are as follows. It was confirmed that there was a significant positive relationship between manager ability and income smoothing at the 1% level. When managers make income, it can be interpreted that managers with superior ability can make profits better by accurately predicting the future. It is the same result as the expectation of this study that managers with excellent ability have high incentives to soften profits by reducing profit volatility through more accurate forecasting. Therefore, this study empirically analyzed that managers with excellent abilities are more effective in implementing income smoothing strategies.

A Study on the Applicability of Neural Network Model for Prediction of tee Apartment Market (아파트시장예측을 위한 신경망분석 적응가능성에 대한 연구)

  • Nam, Young-Woo;Lee, Jeong-Min
    • Korean Journal of Construction Engineering and Management
    • /
    • v.7 no.2 s.30
    • /
    • pp.162-170
    • /
    • 2006
  • Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.