• Title/Summary/Keyword: Forecast variables

Search Result 281, Processing Time 0.021 seconds

Effect on the PM10 Concentration by Wind Velocity and Wind Direction (풍속과 풍향이 미세먼지농도에 미치는 영향)

  • Chae, Hee-Jeong
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.3
    • /
    • pp.37-54
    • /
    • 2009
  • The study has analyzed impacts and intensity of weather that affect $PM_{10}$ concentration based on PM10 forecast conducted by the city of Seoul in order to identify ways to improve the accuracy of PM10 forecast. Variables that influence $PM_{10}$ concentration include not only velocity and direction of the wind and rainfalls, but also those including secondary particulate matter, which were identified to greatly influence the concentration in complicated manner as well. In addition, same variables were found to have different impacts depending on seasons and conditions of other variables. The study found out that improving accuracy of $PM_{10}$ concentration forecast face some limits as it is greatly influenced by the weather. As an estimation, this study assumed that basic research units and artificially estimated pollutant emissions, study on mechanisms of secondary particulate matter productions, observatory compliment, and enhanced forecaster's expertise are needed for better forecast.

Cloud Forecast using Numerical Weather Prediction (수치 예보를 이용한 구름 예보)

  • Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.3
    • /
    • pp.57-62
    • /
    • 2007
  • In this paper, we attempted to produce the cloud forecast that use the numerical weather prediction(NWP) MM5 for objective cloud forecast. We presented two methods for cloud forecast. One of them used total cloud mixing ratio registered to sum(synthesis) of cloud-water and cloud-ice grain mixing ratio those are variables related to cloud among NWP result data and the other method that used relative humidity. An experiment was carried out period from 23th to 24th July 2004. According to the sequence of comparing the derived cloud forecast data with the observed value, it was indicated that both of those have a practical use possibility as cloud forecast method. Specially in this Case study, cloud forecast method that use total cloud mixing ratio indicated good forecast availability to forecast of the low level clouds as well as middle and high level clouds.

  • PDF

Prediction on the Economic Activity Level of the Elderly in South Korea - Focusing on Machine Learning Method Combined with Forecast Combination - (우리나라 고령층의 경제활동 수준 예측 - 머신러닝 기법과 연계한 예측조합법을 중심으로 -)

  • Kim, Jeong-Woo
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.5
    • /
    • pp.237-247
    • /
    • 2022
  • This study predicts the economic activity level of the elderly in Korea using various machine learning methods. While the previous studies mainly focused on testing the relationship between the economic activity level and the life satisfaction or the social security system, this study aims at the accurate prediction on the economic activity level of the elderly using various machine learning methods and the forecast combination. Dependent variables such as the activity rate, employment rate, etc and independent variables such as the income, average wage, etc compose the dataset in this study. Five different machine learning methods and two forecast combinations are applied to the given dataset. The prediction performances of the machine learning method and the forecast combination varied across the dependent variables and prediction intervals, but it was found that the forecast combination was relatively superior to other methods in terms of the stability of prediction. This study has significance in that it accurately predicted the economic activity level of the elderly and achieved the stability of the prediction, raising practicality from a policy perspective.

Assessment of Performance on the Asian Dust Generation in Spring Using Hindcast Data in Asian Dust Seasonal Forecasting Model (황사장기예측자료를 이용한 봄철 황사 발생 예측 특성 분석)

  • Kang, Misun;Lee, Woojeong;Chang, Pil-Hun;Kim, Mi-Gyeong;Boo, Kyung-On
    • Atmosphere
    • /
    • v.32 no.2
    • /
    • pp.149-162
    • /
    • 2022
  • This study investigated the prediction skill of the Asian dust seasonal forecasting model (GloSea5-ADAM) on the Asian dust and meteorological variables related to the dust generation for the period of 1991~2016. Additionally, we evaluated the prediction skill of those variables depending on the combination of the initial dates in the sub-seasonal scale for the dust source region affecting South Korea. The Asian dust and meteorological variables (10 m wind speed, 1.5 m relative humidity, and 1.5 m air temperature) from GloSea5-ADAM were compared to that from Synoptic observation and European Centre for medium range weather forecasts reanalysis v5, respectively, based on Mean Bias Error (MBE), Root Mean Square Error (RMSE), and Anomaly Correlation Coefficient (ACC) as evaluation criteria. In general, the Asian dust and meteorological variables in the source region showed high ACC in the prediction scale within one month. For all variables, the use of the initial dates closest to the prediction month led to the best performances based on MBE, RMSE, and ACC, and the performances could be improved by adjusting the number of ensembles considering the combination of the initial date. ACC was as high as 0.4 in Spring when using the closest two initial dates. In particular, the GloSea5-ADAM shows the best performance of Asian dust generation with an ACC of 0.60 in the occurrence frequency of Asian dust in March when using the closest initial dates for initial conditions.

A Multiple Variable Regression-based Approaches to Long-term Electricity Demand Forecasting

  • Ngoc, Lan Dong Thi;Van, Khai Phan;Trang, Ngo-Thi-Thu;Choi, Gyoo Seok;Nguyen, Ha-Nam
    • International journal of advanced smart convergence
    • /
    • v.10 no.4
    • /
    • pp.59-65
    • /
    • 2021
  • Electricity contributes to the development of the economy. Therefore, forecasting electricity demand plays an important role in the development of the electricity industry in particular and the economy in general. This study aims to provide a precise model for long-term electricity demand forecast in the residential sector by using three independent variables include: Population, Electricity price, Average annual income per capita; and the dependent variable is yearly electricity consumption. Based on the support of Multiple variable regression, the proposed method established a model with variables that relate to the forecast by ignoring variables that do not affect lead to forecasting errors. The proposed forecasting model was validated using historical data from Vietnam in the period 2013 and 2020. To illustrate the application of the proposed methodology, we presents a five-year demand forecast for the residential sector in Vietnam. When demand forecasts are performed using the predicted variables, the R square value measures model fit is up to 99.6% and overall accuracy (MAPE) of around 0.92% is obtained over the period 2018-2020. The proposed model indicates the population's impact on total national electricity demand.

A Study on the Variables Forecasting Male Adolescents′ Sexual Intercourse (남자 청소년의 성경험에 영향을 미치는 예측요인)

  • Kim Kyung-Hee;Kwon Hye-Jin;Chung Hae-Kyung
    • Journal of Korean Academy of Nursing
    • /
    • v.34 no.6
    • /
    • pp.954-963
    • /
    • 2004
  • Purpose: This study was designed to identify the variables affecting male adolescents' sexual intercourse through a comprehensive analysis of individual and environmental factors. Method: The subjects of this descriptive survey on causal relations were 462 subjects enrolled in liberal and vocational high schools selected on a convenience sampling basis. The data collected from May-July 2002 was put to logistic regression analysis to build a forecast model. Findings: 1) Individual factors such as school record, experience seeking, non-inhibition and sexual permissiveness, 2) family factors such as parental living arrangement, 3) school factors such as career tract and 4) peer factors such as having a boy/girl friend were identified as significant variables forecasting sexual intercourse. Conclusion and Recommendation: The theoretical model built on the basis of the major findings of this study will hopefully help promote a wholesome youth culture related to sexual intercourse. It is recommended that a program be developed that can help control the variables identified in this study along with a follow-up study to verify the model.

Prediction Performance of Ocean Temperature and Salinity in Global Seasonal Forecast System Version 5 (GloSea5) on ARGO Float Data

  • Jieun Wie;Jae-Young Byon;Byung-Kwon Moon
    • Journal of the Korean earth science society
    • /
    • v.45 no.4
    • /
    • pp.327-337
    • /
    • 2024
  • The ocean is linked to long-term climate variability, but there are very few methods to assess the short-term performance of forecast models. This study analyzes the short-term prediction performance regarding ocean temperature and salinity of the Global Seasonal prediction system version 5 (GloSea5). GloSea5 is a historical climate re-creation (2001-2010) performed on the 1st, 9th, 17th, and 25th of each month. It comprises three ensembles. High-resolution hindcasts from the three ensembles were compared with the Array for Real-Time Geostrophic Oceanography (ARGO) float data for the period 2001-2010. The horizontal position was preprocessed to match the ARGO float data and the vertical layer to the GloSea5 data. The root mean square error (RMSE), Brier Score (BS), and Brier Skill Score (BSS) were calculated for short-term forecast periods with a lead-time of 10 days. The results show that sea surface temperature (SST) has a large RMSE in the western boundary current region in Pacific and Atlantic Oceans and Antarctic Circumpolar Current region, and sea surface salinity (SSS) has significant errors in the tropics with high precipitation, with both variables having the largest errors in the Atlantic. SST and SSS had larger errors during the fall for the NINO3.4 region and during the summer for the East Sea. Computing the BS and BSS for ocean temperature and salinity in the NINO3.4 region revealed that forecast skill decreases with increasing lead-time for SST, but not for SSS. The preprocessing of GloSea5 forecasts to match the ARGO float data applied in this study, and the evaluation methods for forecast models using the BS and BSS, could be applied to evaluate other forecast models and/or variables.

Domestic air demand forecast using cross-validation (교차검증을 이용한 국내선 항공수요예측)

  • Lim, Jae-Hwan;Kim, Young-Rok;Choi, Yun-Chul;Kim, Kwang-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • The aviation demand forecast field has been actively studied along with the recent growth of the aviation market. In this study, the demand for domestic passenger demand and freight demand was estimated through cross-validation method. As a result, passenger demand is influenced by private consumption growth rate, oil price, and exchange rate. Freight demand is affected by GDP per capita, private consumption growth rate, and oil price. In particular, passenger demand is characterized by temporary external shocks, and freight demand is more affected by economic variables than temporary shocks.

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

Prediction on the Ratio of Added Value in Industry Using Forecasting Combination based on Machine Learning Method (머신러닝 기법 기반의 예측조합 방법을 활용한 산업 부가가치율 예측 연구)

  • Kim, Jeong-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.12
    • /
    • pp.49-57
    • /
    • 2020
  • This study predicts the ratio of added value, which represents the competitiveness of export industries in South Korea, using various machine learning techniques. To enhance the accuracy and stability of prediction, forecast combination technique was applied to predicted values of machine learning techniques. In particular, this study improved the efficiency of the prediction process by selecting key variables out of many variables using recursive feature elimination method and applying them to machine learning techniques. As a result, it was found that the predicted value by the forecast combination method was closer to the actual value than the predicted values of the machine learning techniques. In addition, the forecast combination method showed stable prediction results unlike volatile predicted values by machine learning techniques.