• Title/Summary/Keyword: Force decoupling

Search Result 27, Processing Time 0.029 seconds

Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method

  • Han, Pengfei;Liu, Jingbo;Fei, Bigang
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.326-342
    • /
    • 2022
  • Comparative analyses of a shield building subjected to a large commercial aircraft impact between decoupling method and coupling method are performed in this paper. The decoupling method is applying impact force time-history curves on impact area of the shield building to study impact damage effects on structure. The coupling method is using a model including aircraft and shield building to perform simulation of the entire impact process. Impact force time-history curves of the fuselage, wing and engine and their total impact force time-history curve are obtained by the entire aircraft normally impacting the rigid wall. Taking aircraft structure and impact progress into account some loading areas are determined to perform some comparative analyses between decoupling method and coupling method, the calculation results including displacement, plastic strain of concrete and stress of steel plate in impact area are given. If the loading area is determined unreasonably, it will be difficult to assess impact damage of impact area even though the accurate impact force of each part of aircraft obtained already. The coupling method presented at last in this paper can more reasonably evaluate the dynamic response of the shield building than the decoupling methods used in the current nuclear engineering design.

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi, Jin-Young;Lee, Kwang-Hyun;Lee, Jae-Sung;Kim, Sang-Hoon;Yang, Hyun-Seok;Park, No-Cheol;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.117-122
    • /
    • 2006
  • A novel method to find interaction dynamics between focusing direction and tracking direction in an optical pick-up is proposed. and the decoupling control to reduce the interaction effect is discussed. First, the basic principle to detect dynamic interaction analysis using back electromotive force is introduced. Second, the interaction analysis between focusing and tracking direction of is analyzed for a commercial slim type optical pick-up. Finally. decoupling control process and its simulation results are shown.

  • PDF

A Robust Dynamic Decoupling Control Scheme for PMSM Current Loops Based on Improved Sliding Mode Observer

  • Shen, Hanlin;Luo, Xin;Liang, Guilin;Shen, Anwen
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1708-1719
    • /
    • 2018
  • A complete current loop decoupling control strategy based on a sliding mode observer (SMO) is proposed to eliminate the influence of current dynamic coupling and back electromotive force (EMF) in the vector control of permanent magnet synchronous motors. With this strategy, current dynamic decoupling and back EMF compensation can be simultaneously achieved. Unlike conventional methods, the proposed strategy can avoid the disturbances caused by the parametric variations of motor systems and maintain the advantages of proportional integral (PI) controllers, which are robust and easy to operate. An improved SMO, which uses a special PI regulator other than a linear saturation function as the equivalent control law in the boundary layer of a sliding surface, is proposed to eliminate the estimated errors caused by the quasi-sliding mode and obtain a satisfactory decoupling performance. The stability and parameter robustness of the proposed strategy are also analyzed. Physical experimental results are presented to verify the validity of the method.

Decoupling Control of Tractive and Vertical Force of Linear Induction Motor (선형 유도전동기의 추진력 및 수직력 제어 방식)

  • Oh, Sung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.289-291
    • /
    • 1996
  • Linear induction motor(LIM) is widely used to drive magnetic levitation train. To drive LIM, different control method compared with conventional rotary type machine is needed. Since vertical force is generated inherently and it effects on the levitation system, vertical force should be kept constant for stable levitation. To keep vertical force constant, slip frequency should be kept constant. Once slip frequency is kept constant, tractive force can be controlled by adjusting motor currents. In this paper, control methods used so far arc analyzed with some experimental results and decoupling control algorithm is proposed to control tractive and vertical force separately. Control algorithm is verified through simulation.

  • PDF

Coupling Analysis of Slim Type Optical Pick-up using Back Electromotive Force, and Decoupling Control for It (역기전력을 이용한 슬림형 광 픽업의 연성 해석 및 비연성 제어기 설계)

  • Choi Jin-Young;Lee Kwang-Hyun;Lee Jae-Sung;Kim Sang-Hoon;Yang Hyunseok;park No-Cheol;Park Young-Pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.229-234
    • /
    • 2005
  • A novel method to measure the interaction movement, focusing direction and tracking direction in an optical pick-up, is proposed and the decoupling control for it is discussed. First, the basic principle of the coupline analysis method using back electromotive farce is introduced. Second, the interaction analysis between focusing direction and tracking direction fur commercial slim type actuator is performed using the proposed method. Finally, the coupling analysis and decoupling control for the slim type optical pick-up are discussed. From the brief simulation, we shows that the effectiveness and validity of the proposed method.

  • PDF

Speed Control of the Conveyance SLIM by the Decoupling Control (비간섭 제어에 의한 반송용 편측식 선형 유도전동기의 속도제어)

  • Shin, D.R.;Jung, Y.I.;Choi, S.Y.;Roh, T.K.;Woo, J.I.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2142-2144
    • /
    • 1998
  • We proposed the speed control of the SLIM(Single-sided Linear Induction Motor) for conveyance system by the decoupled thrust control. The voltage equations of SLIM are expressed on the suitable $\alpha-\beta$ axis by the proposed equivalent circuit, which can analyze the characteristics of the thrust and the normal force and so on. These control methods, which are the slip angular frequency control and the decoupling control for the thrust and normal force by analyzing these parameters can be successfully driven without interfering of each axis. These results exemplified the linear drive of SLIM with the reference value.

  • PDF

Controller Design for Feedforward Decoupling in SPM-based Data Storage System (SPM-based Data Storage System 의 Feedforward Decoupling 기법을 적용한 제어기 설계)

  • Jeong, Ji-Young;Moon, Jun;Lee, Choong-Woo;Chung, Chung-Choo;Kim, Young-Sik
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.2
    • /
    • pp.59-65
    • /
    • 2007
  • Scanning Prove Microscope (SPM) - based Data Storage (SDS)는 Atomic Force Microscope (AFM)을 이용하여 Cantilever Tip 이 저장 장치 미디어에 나노미터 단위로 비트를 읽고, 쓰고 지우는 저장 장치로써, x, y 두 축을 이용한다. 따라서 축간 coupling 의 영향이 크게 발생한다. 따라서 축간 coupling 의 영향을 고려하여 제어기를 설계하여야 한다. 본 논문은 coupling 요소를 제거하기 위하여 Feedforward Decoupler 를 설계하여 Stage 의 입력 앞 단에 추가하는 방법을 제안하였다. Feedforward Decoupler 를 추가함으로써 coupling 요소가 줄어드는 것을 모의 실험을 통해 확인한다. 이를 통해 나노급으로 보다 정밀한 제어가 가능함을 확인하였다.

  • PDF

A Compliance Control Method for Robot Hands with Consideration of Decoupling among Fingers/Joints (손가락/관절 간의 기구학적 독립을 고려한 로봇 손의 컴플라이언스 제어 방법)

  • Kim, Byoung-Ho;Yi, Byung-Ju;Suh, Il-Hong;Oh, Sang-Rok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.568-577
    • /
    • 2000
  • In this paper for an object grasped by a robot hand to work in stiffness control domain we first investigate the number of fingers for successful stiffness modulation in the object operational space. Next we propose a new compliance control method for robot hands which consist of two steps. RIFDS(Resolved Inter-Finger Decoupling Solver) is to decompose the desired compliance characteristic specified in the op-erational space into the compliance characteristic in the fingertip space without inter-finger coupling and RIJDS(Resolved Inter-Joint Decoupling Solver) is to decompose the fingertip space without inter-finger coupling and RIJDS(Resolved inter-Joint Decoupling Solver) is to decompose the compliance characteristic in the finger-tip space into the compliance characteristic given in the joint space without inter-joint coupling. Based on the analysis results the finger structure should be biominetic in the sense that either kniematic redundancy or force redundancy are required to implement the proposed compliance control scheme, Five-bar fingered robot hands are used as an illustrative example to implement the proposed compliance control method. To show the effectiveness of the proposed compliance control method simulations are performed for two-fingered and three-fingered robot hands.

  • PDF

Fault Tolerant Control of Magnetic Bearings with Force Invariance

  • Na, Uhn-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.731-742
    • /
    • 2005
  • A magnetic bearing even with multiple coil failure can produce the same decoupled magnetic forces as those before failure if the remaining coil currents are properly redistributed. This fault-tolerant, force invariance control can be achieved with simply replacing the distribution matrix with the appropriate one shortly after coils fail, without modifying feedback control law. The distribution gain matrix that satisfies the necessary constraint conditions of decoupling linearized magnetic forces is determined with the Lagrange Multiplier optimization method.