• 제목/요약/키워드: Force Ripple

검색결과 172건 처리시간 0.026초

Module Phase Set Shift를 이용한 선형 동기 전동기의 추력 리플 저감 설계 (Design of Linear Synchronous Motor for Thrust Force Ripple Reduction using Module Phase Set Shift)

  • 유광현;이형우;조수연;오세영;함상환;임종빈;안한웅;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.848-849
    • /
    • 2011
  • Rotating machines are using gears to change the rotary motion into the linear motion, on the other hand, linear motors have a accurate position control and excellent dynamic characteristics because of generating a thrust force directly. But the important problem, one of the linear motor is a high thrust force ripple. Thrust force ripple has a bad effect on the position accuracy and the dynamic characteristics, so it is necessary to reduce the thrust force ripple. Cogging is one of the cause that affect thrust force ripple. Cogging has some connection with the GCD between pole pitch and teeth pitch It is proposed method to reduce a thrust ripple of the linear motor that chamfering, skew, and so on. In this paper, the module phase set shift(MPSS) is used to reduce a thrust force ripple that has a similar effect to skew. And propose a method that reduce a thrust force ripple more by use of chamfering.

  • PDF

초정밀 선형 모터 시스템의 적응형 힘리플 보상과 정밀 트랙킹 제어 (Adaptive Force Ripple Compensation and Precision Tracking Control of High Precision Linear Motor System)

  • 최영만;권대갑;이문구
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.51-60
    • /
    • 2005
  • This paper describes a robust control scheme for high-speed and long stroke scanning motion of high precision linear motor system consisting of linear motor, air bearing guide and position measurement system using heterodyne interferometer. Nowadays, semiconductor process and inspection of wafer or LCD need high speed and long travel length for their high throughput and extremely small velocity fluctuations or tracking errors. In order to satisfy these conditions, linear motor system are widely used because they have large thrust force and do not need motion conversion mechanisms such as ball screw, rack & pinion or capstan with which the system are burdened. However linear motors have a problem called force ripple. Force ripple deteriorates the tracking performances and makes periodic position errors. So, force ripple must be compensated. To maximize the tracking performance of linear motor system, we propose the control scheme which is composed of a robust control method, Time Delay Controller (TDC) and a feedforward control method, Zero Phase Error Tracking Control (ZPETC) for accurate tracking a given trajectory and an adaptive force ripple compensation (AFC) algorithm fur estimating and compensating force ripple. The adaptive ripple compensation is continuously refined on the basis of tracking error. Computer simulation results based on modeled parameters verify the effectiveness of the proposed control scheme for high-speed, long stroke and high precision scanning motion and show that the proposed control scheme can achieve a sup error tracking performance in comparison to conventional TDC control.

헤링본 치를 이용한 축방향 이상 횡자속형 전동기의 토크 리플과 불평형 자기력 저감 (Reduction of Toque Ripple and Unbalanced Magnetic Force of a Rotatory Axial Two-Phase Transverse Flux Machine by Using Herringbone Teeth)

  • 안희태;장건희;장정환;정시욱;강도현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.682-688
    • /
    • 2008
  • Transverse flux machine (TFM) has been considered as a promising driving machine especially at the low-speed applications because it has higher power density, torque and efficiency than the conventional electrical motors. However, it has complicated structure, large torque ripple and sometimes unbalanced magnetic force due to its inherent structure. This paper investigates the characteristics of torque ripple and unbalanced magnetic force of a rotatory two-phase TFM due to the teeth geometry by using the 3-dimensional finite element method, and it develops a rotatory two-phase TFM with herringbone teeth to reduce the torque ripple as well as to eliminate the unbalanced magnetic force.

  • PDF

프린징 자속을 고려한 베어링리스 SRM 회전자극 설계 및 특성분석 (Rotor Pole Design and Characteristics Analysis of the Bearingless Switched Reluctance Motor Considering Fringing Flux)

  • 이찬교;오주환;신광철;권병일
    • 전기학회논문지
    • /
    • 제59권1호
    • /
    • pp.57-64
    • /
    • 2010
  • In this paper, a novel Bearingless Switched Reluctance Motor(BLSRM) with the shoe rotor pole in order to minimize the torque ripple and the suspension force ripple at an overlap position is proposed. For reduction the torque ripple and the suspension force ripple at an overlap position, the fringing flux is used for the main flux. This configuration of the rotor pole results in more average torque with high suspension force. In addition, this paper is compared the transient characteristics using the inductance look-up table. The torque, radial force and flux density are analyzed by finite element method.

신경망 제어에 의한 철심형 리니어모터의 추종성 향상 연구 (Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor by Neural Network Control)

  • 송창규;김경호;정재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.73-77
    • /
    • 2002
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted far a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects tracking accuracy of the carrage and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method and neural network control. Experiments carried 7ut on the linear motor test setup show that this control methods is usable in order to reduce the motor ripple.

  • PDF

철심형 리니어모터 이송계의 추종성 향상에 관한 연구 (Study for Improvement of Tracking Accuracy of the Feeding System with Iron Core Type Linear DC Motor)

  • 송창규;황주호;박천홍;김경호;정재한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.71-73
    • /
    • 2001
  • The requirements for higher productivity call for high speed of the machine tool axes. Iron core type linear DC motor is growly accepted for a viable candidate of the high speed machine tool feed unit. LDM, however, has inherent disturbance force components: cogging and force ripple. These disturbance force directly affects the carrage tracking accuracy and must be eliminated or reduced. Reducing motor ripple, this paper adapted the feed forward compensation method. Experiments carried out on the linear motor test setup show that this compensation method is usable in order to reduce the motor ripple.

  • PDF

철심형 리니어모터의 추력 리플 억제에 관한 연구 (Studdy for Force Ripple Suppression of the Iron Core Linear Motors)

  • 송창규;김정식;김경호;박천홍
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.358-362
    • /
    • 2004
  • Higher productivity requires high-speed motion of machine tool axes. The iron core linear DC motor (LDM) is widely accepted as a viable candidate for high-speed machine tool feed unit. LDM, however, has two inherent disturbance force components, namely cogging and thrust force ripple. These disturbance forces directly affect the tracking accuracy of the feeding system and must be eliminated or reduced. In order to reduce motor ripple, this research adapted the feedforward compensation method and neural network control. Experiments carried out with the linear motor test setup show that these control methods are effective in reducing motor ripple.

  • PDF

신경회로망을 이용한 2상 하이브리드 리니어 펄스 모터의 힘 리플 감소 (Force Ripple Reduction of 2 Phase Hybrid Lineny Pulse Motor using Neural Network)

  • 김유신;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.362-362
    • /
    • 2000
  • The purpose of this thesis is to reduce force ripple of linear pulse motor(LPM) using neural network and to enhance precision. In order to this, we propose a new controller using a neural network to compensate disturbances. The structure includes adaptation block which learns the dynamics of the periodic disturbance and forces the interferences, caused by disturbances. The proposed controller compensates an unmodeled dynamics in the LPM. The neural network changes a current command to reduce position error and force ripple of the LPM. We compare proposed controller with PI controller. Simulation result shows that the proposed controller has better performance than a PI controller without neural network.

  • PDF

포스 디렉티드 방법과 최적 인터리빙 기법을 이용한 타이밍 드리븐 배치 (Timing Driven Placement using Force Directed Method and Optimal Interleaving Technique)

  • 성영태;허성우
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제33권1_2호
    • /
    • pp.92-104
    • /
    • 2006
  • 본 논문에서 제안하는 기법은 기존의 첨단 배치기인 Kraftwerk (& KraftwerkNC)와 Mongrel을 개선 확장한 것으로써, 광역배치에서 셀 중첩을 효과적으로 해결하는 Mongrel의 ripple move 기법과 force directed 광역배치기인 KraftwerkNC의 강력한 성능을 결합한 것이다. 제안한 기법에서는 Mongrel의 ripple move를 최적화하기 위해 Kraftwerk에서 사용한 힘 분산(force spreading)기법을 이용한다. 셀 밀집을 개선시키고, 배선길이를 최적화하는 과정에서 타이밍을 위해 넷 제약조건들이 고려된다. 제안된 기법을 통해 얻은 실험 결과는 배선길이 뿐만 아니라 타이밍에서 향상된 결과를 보여준다.