• Title/Summary/Keyword: Force Components

Search Result 1,049, Processing Time 0.026 seconds

Relationship between texture and major components of radish

  • Seong, Ki-Hyeon;Kim, Seung-Ho;Park, Jong-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.2
    • /
    • pp.240-248
    • /
    • 2016
  • Radish is a common vegetable consumed in Korea, Japan, and China. Radish Breeding has been conducted based on morphological properties, such as shape and color. Recently, physicochemical properties of radish are attracting more attention from breeders to develop cultivars for the retail market. In this study, major components of radish were determined and their relationship with textural property analyzed. Sixty-six radish cultivars were selected and divided into white head (WH) and green head (GH) according to their head color. The cutting forces of GH and WH groups were $2.17{\pm}0.34kg$ and $2.31{\pm}0.36kg$, respectively (P > 0.05). The starch contents of GH and WH were $3.75{\pm}0.39g\;per\;100g$ (dry basis) and $4.24{\pm}0.62g$, respectively. Cellulose contents in both groups were similar at 12.3-12.4 g per 100 g (dry basis). Pearson correlation coefficients between cutting force, cellulose content, and starch content ranged from -0.33-0.326 which does not demonstrate any strong correlation between these components. Therefore, no relationship was found between the cutting force and the starch content or the cellulose content for the cultivars analyzed in this study. As the first intensive study on the texture and the major components of radish, these results could provide valuable information for radish breeding if further studies on taste and nutrient components are conducted.

Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside (스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석)

  • Park, Jun Hyuk;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

A Study on the Detection of Tool Wear by Use of Cutting Force Component in Orthogonal Cutting (선삭가공에서 절삭분력을 이용한 공구의 마멸검출에 관한 연구)

  • Kim, Ki-Choong;Hyun, Chung-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.30-42
    • /
    • 1986
  • On the analysis of cutting mechanics in orthogonal cutting, each cutting force component can be predicted. By adding the flank face wear term to the prediction equation for cutting force components, complete equations are obtained. Using these equations, it is shown that cutting force components are increased linearly as flank face wear land is developed, in theory and experiment. By making non-dimensional term ie. Fv/Fc, the width of variation of output signal Fv/Fc is greately decreased compared with each cutting force component as cutting condition is varied. Among these conditions, the variation of chip width in the range of more than 1mm and that of cutting velocity have little effect on the output signal Fv/Fc, that of Flank face werr land can be detected without difficulty.

  • PDF

Forced Vibration of a Circular Ring with Harmonic Force (조화력에 의한 원환의 강제진동)

  • Hong, Jin-Sun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.123-128
    • /
    • 2005
  • Forced vibration of a thin circular ring with a concentrated harmonic force is analyzed when the ring is free and has only the in-plane motion. Using the unit doublet function for external force, the governing equation is obtained and is solved by the use of Laplace transform. The exact solutions of displacement components and bending moment are obtained. In order to verify the solutions of analysis, finite element analysis is performed and the results shows good agreement. Then, frequency response curves for displacement and bending moment are obtained. In deriving the governing equations and the solutions, nondimensional parameter of the exciting frequency and the magnitude of exciting force are extracted. As the displacement components are obtained, the remaining bending strain, slope, curvature, shear force, etc. can also be derived. With the results of this work, the responses of a free ring excited on multiple points with different frequencies can also be obtained easily by superposition.

Stable Haptic Display Based on Coupling Impedance for Internal and External Forces

  • Kawai, Masayuki;Yoshikawa, Tsuneo
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.2-8
    • /
    • 2002
  • This paper discusses haptic display for grasping a virtual object by two fingers. Much research has been done on fundamental analysis for stability of haptic display. But it is difficult to apply the results immediately to grasping situations by two fingers, since the studies usually deal with a single device and a single object and the fingertip force in grasping situations has two components, internal and external components. The conventional methods, which specify the coupling impedance at each contact point separately, have no other alternative but to specify the impedance for the sum of the internal and external components. So even if only the impedance for the external force should be changed, the impedance for the internal force is also changed at the same time. In this paper, a new method, in which the coupling impedance is specified separately for the internal and external forces, is proposed and the stability of the proposed method is discussed using passivity analysis for 1 -DOF(Degree-Of-Freedom) system. Finally, some experiments are performed to study the effects of the proposed method.

The Surface Tension Components of Mixed Surfactant Solutions (혼합계면활성제 용액의 표면장력 성분)

  • 정혜원;윤혜신
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.690-696
    • /
    • 1996
  • In order to study the affect of surfactants on the soil removal, the dispersion and polar force components of surface tension for surfactant solutions (such as LAS, AS, AOS, AES, AE) were calculated using extended Fowkes equation. The contact angles on paraffin and surface tension of surfactant solutions were measured. Cmcs of LAS, AS, AES and AE were below the concentration of 0.05%, but the cmc of AOS was between 0.05% and 0.1%. The surface tension of AE was lowest but the dispersion force component was greastest. Total surface tension of every mixed anionic surfactant was lower than that of single surfactants, and the dispersion force components were almost decreased. The addition of sodium carbonate to the sufactant solutions decreased the surface tension, and the surface tensions of surfactant solutions were lowered after washing.

  • PDF

Sensing method of multi-component forces and moments using a column structure (기둥을 이용한 다축 힘/모멘트 감지 방법에 관한 연구)

  • Shin, H.H.;Kang, D.I.;Park, Y.K.;Kim, J.H.;Joo, J.W.;Kim, O.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.837-841
    • /
    • 2001
  • The column-type sensing element in building and mechanical construction parts was designed as three forces and three moments sensor by attaching strain gages approximately. Compared to conventional multi-component sensor, the designed sensor can solve the problem about low stiffness and high cost. The radius of the column was designed analytically and compared with finite element analysis. The coupling errors between components were minimized by using addition and subtraction procedure of signals. The fabricated sensor was tested by using a deadweight force standard machine and a six-component force calibration machine in Korea Research Institute of Standards and Science(KRISS). The calibration showed that the multi-component force/moment sensor had coupling error less than 19.8 % between $F_x$ and $M_y$ components, and 9.0 % in case of other components.

  • PDF

Surface Texturing in Hydraulic Machine Components for Friction Reduction (Surface Texturing에 의한 유압부품의 마찰저감)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.

Indirect force identification of air-jet weaving machine infrequency domain (에어제트 직기에 가해지는 가진력 추정)

  • Jung, Eui-Il;Chun, Du-Hwan;No, Suk-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.238-241
    • /
    • 2006
  • For the effective reduction of structural vibration level it is important to obtain the exciting force components. But, sometimes direct force measurement is infeasible due to the geometric limitation of sensor placement. In this case, indirect force identification becomes useful tool for obtaining input force information. In this paper, indirect force technique was applied to air-jet weaving machine and shows some numerical results.

  • PDF

Analysis of cutting forces and roughness during hard turning of bearing steel

  • Bouziane, Abderrahim;Boulanouar, Lakhdar;Azizi, Mohamed Walid;Keblouti, Ouahid;Belhadi, Salim
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.285-294
    • /
    • 2018
  • An experimental study has been carried out to analyze the effect of cutting parameters (cutting speed, feed and depth of cut) and tool nose radius on the surface roughness and the cutting force components during hard turning of the AISI 52100 (50 HRC) steel with a ceramic cutting tool. The tests have been conducted according to the methodology of planning experiments, based on an orthogonal plan of Taguchi (L27). By using the response surface methodology (RSM), the components of the cutting force and the roughness of the machined surface were modeled and the effects of the input parameters were analyzed statistically by ANOVA and RSM. The results show that the feed (f), the tool nose radius (r), the cutting speed (Vc), the interaction between feed and tool nose radius ($f{\times}r$) as well as that of the quadratic effect ($f^2$) all have significant effects on the surface roughness (Ra). The feed is the most influencing factor with a contribution of 47.31%. The components of the cutting force were strongly influenced by the depth of cut, followed by the advance with a lower degree. By comparing the experimental values with those predicted by the models of the cutting force components and the surface roughness, it appears that they are in very good correlation.