• Title/Summary/Keyword: Focusing wave

Search Result 336, Processing Time 0.021 seconds

Smart Far-Field Wireless Power Transfer via Time Reversal (시간 역전을 기반으로 한 지능적 원거리 무선전력전송)

  • Park, Hong Soo;Hong, Ha Young;Hong, Sun K.
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.285-289
    • /
    • 2018
  • In this paper, we demonstrate electromagnetic wave focusing and rectification based on time reversal as a smart method for far-field wireless power transfer. Time reversal in a complex propagation environment allows for transmission of high peak power pulses by focusing the electromagnetic waves selectively regardless of the receiver position. We demonstrate wave focusing and radio frequency (RF) to direct current (DC) rectification via numerical simulation of a complex propagation environment. The results reveal that time reversal can ensure peak power up to 12 dB greater compared to a narrowband continuous wave signal, thereby enhancing the rectified DC voltage with better efficiency.

A Study on Techniques for Focusing Circumferential Array Guided Waves for Long Range Inspection of Pipes (배관 원거리 진단을 위한 원주방향 배열 유도초음파 집속기술 개발)

  • Kang, To;Kim, Hak-Joon;Song, Sung-Jin;Cho, Young-Do;Lee, Dong-Hoon;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.114-121
    • /
    • 2009
  • Ultrasonic guided waves have been widely utilized for long range inspection of structures. Especially, development of array guided waves techniques and its application for long range gas pipe lines(length of from hundreds meters to few km) were getting increased. In this study, focusing algorithm for array guided waves was developed in order to improve long range inspectability and accuracy of the array guided waves techniques for long range inspection of gas pipes, and performance of the developed techniques was verified by experiments using the developed array guided wave system. As a result, S/N ratio of array guided wave signals obtained with the focusing algorithm was increased higher than that of signals without focusing algorithm.

Fabrication Technology of the Focusing Grating Coupler using Single-step Electron Beam Lithography

  • Kim, Tae-Youb;Kim, Yark-Yeon;Han, Gee-Pyeong;Paek, Mun-Cheol;Kim, Hae-Sung;Lim, Byeong-Ok;Kim, Sung-Chan;Shin, Dong-Hoon;Rhee, Jin-Koo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.1
    • /
    • pp.30-37
    • /
    • 2002
  • A focusing grating coupler (FGC) was not fabricated by the 'Continuous Path Control'writing strategy but by an electron-beam lithography system of more general exposure mode, which matches not only the address grid with the grating period but also an integer multiple of the address grid resolution (5 nm). To more simplify the fabrication, we are able to reduce a process step without large decrease of pattern quality by excluding a conducting material or layer such as metal (Al, Cr, Au), which are deposited on top or bottom of an e-beam resist to prevent charge build-up during e-beam exposure. A grating pitch period and an aperture feature size of the FGC designed and fabricated by e-beam lithography and reactive ion etching were ranged over 384.3 nm to 448.2 nm, and 0.5 $\times$ 0.5 mm$^2$area, respectively. This fabrication method presented will reduce processing time and improve the grating quality by means of a consideration of the address grid resolution, grating direction, pitch size and shapes when exposing. Here our investigations concentrate on the design and efficient fabrication results of the FGC for coupling from slab waveguide to a spot in free space.

Method Generating Circular Wave for Synthetic Focusing (초음파 영상 시스템의 Synthetic Focusing을 위한 구면파 발생 방법)

  • Oh, J.S.;Kim, J.J.;Song, T.K.;Ahn, Y.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.215-216
    • /
    • 1998
  • The ultrasonic imaging systems using synthetic aperture beamforming has been formed in the way that one element transmits and then receives a pulse. Because the amplitude of a pulse from one element is too small to propagate a long distance, the SNR(Signal to Noise Ratio)is low. This paper proposes the method to make a circular wave almost equal to one generated by one element using several elements. The amplitude of the wave made up of several elements is much larger than that of one element. And we can improve the SNR.

  • PDF

On the Statistical Characteristics of Freak Wave Occurrence (Freak Wave 발생의 통계적 특성에 대하여)

  • Kim, Do-Young
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.138-145
    • /
    • 2011
  • In this paper time series wave data are simulated by the Monte Calo method using random numbers to generate random phases of the wave signal. The simulated wave signasl are used to study the characteristics of freak waves. Various sea states are represented by combinations of the significant wave height $H_s$ defined in the spectrum method and the significant wave steepness $S_s$. For a fixed value of $S_s$, the probability of the occurrence of the freak wave is decreased as $H_s$ increases. For a fixed value of $H_s$ the probability of the occurrence of the freak wave increases as $S_s$ increases. The average value of the maximum wave height increase as $S_s$ increases, but the average height of freak wave remains the same and the value approaches two times of $H_s$. For the fixed value of $S_s$, average kurtosis of wave elevation increases as $H_s$ increases, but for a fixed $H_s$, the average kurtosis decreases as $S_s$ increases. The average of abnormality index(AI) is around 2.11 irregardless of $H_s$ and $S_s$. The maximum value of AI lies between 2.5 - 3.0. Therefore it is conjectured that AI maximum due to linear focusing is 3.0.

Retro-self-focusing and pinholing effect in a refractive index grating

  • Lee, Jae-Cheul
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.23-25
    • /
    • 1997
  • In this paper we will show theoretically that a refractive index grating exhibits a retro-self-focusing effect and an accompanying pinholing effect under the Gaussian intensity distribution of an incident optical field. Those effects result from an effective wave number change of the medium due to the intense optical field.

On the Statistical Characteristics of the New Year Wave (New Year Wave의 통계적 특성에 대하여)

  • Kim, Do Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.102-108
    • /
    • 2013
  • In this paper time series wave data, which were measured at the Draupner platform in the North Sea on 1995, are used to investigate statistical characteristics of nonlinear wave. Various statistical properties based on time and frequency domain are examined. The Gram-Chalier distribution fits the probability of wave elevation better than the Gaussian distribution. The skewness of wave profile is 0.393 and the kurtosis is 4.037 when the freak wave is occurred. The nonlinearity of D1520 data is higher than two adjacent wave data. AI index of the New Year Wave is 2.11 and the wave height is 25.6m. The zero crossing wave period of the New Year Wave is 12.5s which is compared to the average zero up-crossing period 11.3s. The significant steepness of wave data is 0.077 when the freak wave was occurred. H1/3/${\eta}_s$ does not increases as the kurtosis increases and the values is close to 4. The New Year Wave belongs to highly nonlinear wave data packet but the AI index is within linear focusing range.

Development of MRI Scanning Technique that is Comfortable for Patients with Anxiety Disorder

  • Cho, Moo-Seong;Cho, Jae-Hwan;Chang, Yong-Min;Cho, Yong-Ho;Zeon, Seok-Kil;Dong, Kyung-Rae;Chung, Woon-Kwan;Lee, Hae-Kag;Kim, Hyun-Ju;Bae, Jae-Young;Ahn, Jae-Ouk;Lee, Sang-Jeong
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.350-362
    • /
    • 2011
  • The principal objective of this study was to develop a scanning technique that helps patients reduce their anxiety and relax their physical tension in the MRI system. The study targeted 10 healthy persons with no medical history of anxiety disorder in the past and with no current clinically diagnosed anxiety disorder, as well as 10 patients who were currently experiencing an anxiety disorder during the MRI scanning. The focusing board assembly was self-manufactured to conduct a clinical experiment via MRI scans. As a method to confirm the efficacy of the experiment, the bio meter was used to measure brainwaves from the study targets that were divided into the normal person group (A), who felt no anxiety in the MRI system and the experimental group, (B) who did experience anxiety in the MRI system. The two groups were compared between the cases in which the focusing board assembly was used and not used after measurements were conducted using the model MRI system and the bio meter. According to the comparison and analysis results, low measurements of the ${\alpha}$ wave indicate highly effective relaxation of tension. In the normal person group, the ${\alpha}$ wave measurement showed almost no difference between cases in which the focusing board assembly was used and cases in which it was not used. In the experimental group, the $\acute{a}$ wave measurements were lower in cases in which the focusing board assembly was used than in cases in which the focusing board assembly was not used; this was indicative of a profound relaxation effect.

An Experimental Study of Wave Impact Loads on an FPSO Bow in 2D Wave-Tank

  • Dong-Min Park;Byoungjae Park;Kangsu Lee
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.218-231
    • /
    • 2024
  • In harsh environments, an floating production storage and offloading (FPSO) is occasionally damaged by impact loads, such as bow flare slamming and green water. This study conducted an impact load measurement experiment on a model of an FPSO bow in a 2D wave tank. Three types of frequency-focused waves (steep, spilling, and plunging) were generated, and the speed and slope of the waves were measured. Seven wave probes were placed in a row, and the wave elevation was measured to determine the speed and slope of the waves. In addition, the side of the 2D wave tank was photographed with a high-speed camera. The speed and slope of the waves obtained from the wave probe array agreed well with those obtained from the photographs taken using a high-speed camera. In the case of a steep wave, wave runup occurred at the bow before the wave reached the bow of the FPSO, so no impact load was generated, and only hydrostatic pressure was measured. Impact loads were generated in the spilling and plunging waves, and the magnitude of impact loads using the Von Karman's estimation formula and the impact loads measured in model tests showed similar values.

Imaging of Harmonic Wave Generated by Contact Acoustic Nonlinearity in Obliquely Incident Ultrasonic Wave (경사입사 초음파에서 계면 접촉 음향 비선형성에 의해 발생한 고조파의 영상화)

  • Yun, Dong-Seok;Choi, Sung-Ho;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.362-368
    • /
    • 2012
  • The objective of this study is to image the harmonic wave generated by contact acoustic nonlinearity in obliquely incident ultrasonic wave for early detection of closed cracks. A closed crack has been simulated by contacting two aluminum block specimens producing solid-solid contact interfaces and then acoustic nonlinearity has been imaged with contact pressure. Sampling phased array(SPA) and synthetic aperture focusing technique(SAFT) are used for imaging techniques. The amplitude of the fundamental frequency decreased with appling pressure. But, the amplitude of second harmonic increased with pressure and was a maximum amplitude at the simulation point of closed crack. Then, the amplitude of second harmonic decreased. As a result, harmonic imaging of contact acoustic nonlinearity is possible and it is expected to be apply for early detection of initial cracks.