DOI QR코드

DOI QR Code

On the Statistical Characteristics of Freak Wave Occurrence

Freak Wave 발생의 통계적 특성에 대하여

  • Kim, Do-Young (Department Naval Architecture and Ocean Engineering, Hongik University)
  • 김도영 (홍익대학교 조선해양공학과)
  • Received : 2011.05.09
  • Accepted : 2011.05.12
  • Published : 2011.05.25

Abstract

In this paper time series wave data are simulated by the Monte Calo method using random numbers to generate random phases of the wave signal. The simulated wave signasl are used to study the characteristics of freak waves. Various sea states are represented by combinations of the significant wave height $H_s$ defined in the spectrum method and the significant wave steepness $S_s$. For a fixed value of $S_s$, the probability of the occurrence of the freak wave is decreased as $H_s$ increases. For a fixed value of $H_s$ the probability of the occurrence of the freak wave increases as $S_s$ increases. The average value of the maximum wave height increase as $S_s$ increases, but the average height of freak wave remains the same and the value approaches two times of $H_s$. For the fixed value of $S_s$, average kurtosis of wave elevation increases as $H_s$ increases, but for a fixed $H_s$, the average kurtosis decreases as $S_s$ increases. The average of abnormality index(AI) is around 2.11 irregardless of $H_s$ and $S_s$. The maximum value of AI lies between 2.5 - 3.0. Therefore it is conjectured that AI maximum due to linear focusing is 3.0.

이 논문에서는 Monte Carlo method를 이용하여 주어진 파랑스펙트럼에서 위상차를 임의의 수 (random number)를 발생시켜 파형의 시계열 자료를 시뮬레이션하여 freak wave의 발생 특성을 살펴보았다. 여러 가지 상태의 해상상태를 스펙트럼법에서 정의한 유의파고 $H_s$와 유의파첨도 $S_s$의 조합을 이용해서 표시하였다. 유의파첨도가 동일한 경우에는 $H_s$가 커질수록 freak wave 발생 확률이 낮아지며 $H_s$가 동일한 경우 유의파첨도가 커질수록 freak wave 발생확률이 높아진다. 주어진 해상상태에서 최대파고 $H_{max}$의 평균은 $S_s$의 값이 증가함에 따라 조금씩 증가한다. 그러나 freak wave의 평균파고는 $S_s$에 관계없이 일정한 값을 가지며 freak wave 파고의 평균은 $H_s$의 2배가 된다. $S_s$가 일정한 경우 $H_s$가 증가하면 파형의 평균 첨도(kurtosis)가 증가한다. 그러나 $H_s$가 일정한 경우 $S_s$가 증가하면 첨도의 평균은 감소한다. Freak wave 발생 기준인 이상지수(Abnormality index, AI)의 평균값은 $H_s$$S_s$에 관계없이 2.11 정도의 값을 가지며 AI의 최대값은 2.5-3.0 사이의 값을 가진다. 따라서 Linear focusing에 의해서 발생한 freak wave의 AI의 상한 값은 3.0 정도라고 추정할 수 있다.

Keywords

References

  1. Compaq 2001, Compaq Visual Fortran version 6.6, Language Reference.
  2. Faulkner, D., 2001, Rogue waves - defining their characteristics for marine design. In: Olagnon M, Athanassoulis GA (eds) Rogue Waves 2000, Ifremer, France, pp 3-18.
  3. Guedes, S.C., Cherneva, Z., Antao, E.M., 2004, Abnormal waves during Hurricane Camille. J Geophys Res 109.
  4. Holliday, N.P., Yelland, M.J., Pascal, R., 2006, Were extreme waves in the Rockall Trough the largest ever recorded? Geophys Res Lett 33, L05613. https://doi.org/10.1029/2005GL025238
  5. Kalif, C., Pleinovsky, E. and Slunyaev, A., 2009, Rogue Waves in the Ocean., Springer.
  6. Mori, N., 1997, Occurrence properties of giant freak waves in Sea Area aroud Japan, J. waterway, port, coastal Engineering, July/Aug. pp. 209-213.
  7. Lawton, G., 2001, Monsters of the deep (The Perfect Wave). New Scientist 170 No 2297, 28-32.
  8. Liu, P.C. and Pinho, U.F., 2004, Freak waves-more frequent that rare! Annales Geophysics, 22, pp. 1839-1842. https://doi.org/10.5194/angeo-22-1839-2004
  9. Liu, P.C. and MacHutchon, K.R., 2006, Are there different kinds of rogue waves? In: Proc 25th Int Conf OMAE 2006, Hamburg, Germany, 2006, OMAE2006-92619:1-6.
  10. Longuet-Higgins, M.S., 1980, "On the distribution of the heights of sea waves: some effects of non-linearity and finite bandwidth", J. Geophy. Res. Vol 85, C3, pp 1519-1523. https://doi.org/10.1029/JC085iC03p01519
  11. Yasuda, T. and Mori, N., 1997, Occurrence of giant freak waves in sea area around Japan, J. Waterway, Port, Coastal, and Ocean Engineering, 123(4), pp. 209-213. https://doi.org/10.1061/(ASCE)0733-950X(1997)123:4(209)
  12. Mori, N., Paul, C.L. and Yasuda, T., 2002, Analysis of freak wave measurements in the Sea of Japan, Ocean Engineering 29, pp. 1399-1414. https://doi.org/10.1016/S0029-8018(01)00073-7
  13. Mori, N., 2004, Occurrence probability of a freak wave in a nonlinear wave field, Ocean Engineering 31, pp. 165-175. https://doi.org/10.1016/S0029-8018(03)00119-7
  14. Rosenthal, W., Lehner, S., Dankert, H. et al., 2003, Detection of extreme single waves and wave statistics. In: RogueWaves: Forecast and Impact on Marine Structures. GKSS Research Center, Geesthacht, Germany.
  15. Stansell, P., 2004, Distributions of extreme wave, crest and trough heights measured in the North Sea, Ocean Engineering, 32, pp. 1015-1036.
  16. Stansell, P., Wolfram, J. and Linfoot, B., 2002, Effect of sampling rate on wave heght statistics, Ocean Eng. 29, 1023-1047. https://doi.org/10.1016/S0029-8018(01)00066-X
  17. Tucker, M.J., 1991, Waves in Ocean Engineering, Ellis Horwood.
  18. 김도영, 2010, "비선형 해양파의 통계적 특성에 대한 해석", 한국해양환경공학회지, 제13권 2호, pp. 112-120.
  19. 신승호, 홍기용, 문재승, 2007, "Freak Wave 특성 파악을 위한 파랑관측 자료의 분석", 한국항해항만학회지 제31권 제6 호, pp. 471-478.

Cited by

  1. The Effect of Sampling Rate on Statistical Properties of Extreme Wave vol.16, pp.1, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.1.36
  2. On the Statistical Characteristics of the New Year Wave vol.27, pp.1, 2013, https://doi.org/10.5574/KSOE.2013.27.1.102