• 제목/요약/키워드: Focused ion beam (FIB) technique

검색결과 25건 처리시간 0.024초

A Site Specific Characterization Technique and Its Application

  • Kamino, T.;Yaguchi, T.;Ueki, Y.;Ohnish, T.;Umemura, K.;Asayama, K.
    • 한국전자현미경학회:학술대회논문집
    • /
    • 한국현미경학회 2001년도 제32차 추계학술대회
    • /
    • pp.18-22
    • /
    • 2001
  • A technique to characterize specific site of materials using a combination of a dedicated focused ion beam system(FIB), and Intermediate-voltage scanning transmission electron microscope(STEM) or transmission electron microscope(TEM) equipped with a scanning electron microscope(SEM) unit has been developed. The FIB system is used for preparation of electron transparent thin samples, while STEM or TEM is used for localization of a specific site to be milled in the FIB system. An FIB-STEM(TEM) compatible sample holder has been developed to facilitate thin sample preparation with high positional accuracy Positional accuracy of $0.1{\mu}m$ or better can be achieved by the technique. In addition, an FIB micro-sampling technique has been developed to extract a small sample directly from a bulk sample in a FIB system These newly developed techniques were applied for the analysis of specific failure in Si devices and also for characterization of a specific precipitate In a metal sample.

  • PDF

집속이온빔을 이용한 탄소나노튜브 팁의 조작 (Manipulation of Carbon Nanotube Tip Using Focused Ion Beam)

  • 윤여환;박준기;한창수
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.122-127
    • /
    • 2006
  • This paper reports on the development of carbon nanotube tip modified with focused ion beam(FIB). We used an electric field which causes dielectrophoresis, to align and deposit CNTs on a metal-coated canning Probe Microscope (SPM) tip. Using the CNT attached SPM tip, we have obtained an enhanced resolution and wear property compared to that from the bare silicon tip through the scanning of the surface of the bio materials. The carbon nanotube tip was aligned toward the source of the ion beam allowing their orientation to be changed at precise angles. By this technique, metal coated carbon nanotube tips that are several micrometer in length are prepared for SPM.

$MgB_2$ 결정립 나노브릿지 특성에 관한 연구 (Properties of $MgB_2$ Intragrain Nanobridges)

  • 홍성학;이순걸;성원경;강원남;김동호;김영국;정국채
    • Progress in Superconductivity
    • /
    • 제10권2호
    • /
    • pp.74-78
    • /
    • 2009
  • Inter-grain nanobridges of the $MgB_2$ superconductor have been fabricated by focused-ion-beam(FIB) and their electrical transport properties were studied. The $MgB_2$ film was prepatterned into microbridges by a standard argon ion milling technique and then FIB-patterned into 100 nm$\times$100 nm bridges. Current-voltage characteristics showed a strong flux-flow type behavior at all temperatures with a trait of Josephson coupling near $T_c$. At low temperatures, the curves showed a two-step resistance-doubled transition with occasional hysteresis. The resistance-doubling transition is believed to be due to a two-channel flux-flow effect. The temperature-dependent critical current data showed $I_c(T){\propto}(1-T/T_c)^2$ near $T_c$, same as a normal barrier junction, and $I_c(T){\propto}(1-T/T_c)^{1.2}$ at low temperatures, similar to that of a film.

  • PDF

MOCVD을 이용하여 자발적 및 인위적으로 제어된 산화아연 나노구조 (Self- and Artificially-Controlled ZnO Nanostructures by MOCVD)

  • 김상우
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.9-10
    • /
    • 2005
  • We report on the fabrication and characterization of self- and artificially-controlled ZnO nanostructures have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanostructures on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing metalorganic chemical vapor deposition (MOCVD) in addition with a focused ion beam (FIB) technique. Widely well-aligned two-dimensional ZnO nanodot arrays ($4{\sim}10^4$ nanodots of 130-nm diameter and 9-nm height over $150{\sim}150{\mu}m^2$ with a period of 750 nm) have been realized by MOCVD on $SiO_2/Si$ substrates patterned by FIB. A low-magnification FIB nanopatterning mode allowed the periodical nanopatterning of the substrates over a large area in a short processing time. Ga atoms incorporated into the surface areas of FIB-patterned nanoholes during FIB engraving were found to play an important role in the artificial control of ZnO, resulting in the production of ZnO nanodot arrays on the FIB-nanopatterned areas. The nanodots evolved into dot clusters and rods with increasing MOCVD growth time.

  • PDF

저탄소.저합금 강의 베이나이트 미세 구조 연구 (Study on the bainitic microstructure in low carbon HSLA steels)

  • 강주석;안성수;유장용;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.154-157
    • /
    • 2007
  • The austenite phase observed in low carbon HSLA steels is well known to be decomposed to various bainitic microstructures, such as granular bainite, acicular ferrite and bainitic ferrite during continuous cooling process. These bainitic microstructures have been usually identified by using either scanning electron microscope (SEM) or transmission electron microscope (TEM). However, SEM and TEM images do no exactly coincide, because of the quite different sample preparation method in SEM and TEM observations. These conventional analysis method is, thus, not suitable for characterization of the complex bainitic microstructure. In this study, focused ion beam (FIB) technique was applied to make site-specific TEM specimens and to identify the 3-dimensional grain morphologies of the bainitic microstructure. The morphological feature and grain boundary characteristics of each bainitic microstructure were exactly identified.

  • PDF

Production and Properties of Amorphous TiCuNi Powders by Mechanical Alloying and Spark Plasma Sintering

  • Kim, J.C.;Kang, E.H.;Kwon, Y.S.;Kim, J.S.;Chang, Si-Young
    • 한국분말재료학회지
    • /
    • 제17권1호
    • /
    • pp.36-43
    • /
    • 2010
  • In present work, amorphous TiCuNi powders were fabricated by mechanical alloying process. Amorphization and crystallization behaviors of the TiCuNi powders during high-energy ball milling and subsequent microstructure changes were studied by X-ray diffraction and transmission electron microscope. TEM samples were prepared by the focused ion beam technique. The morphology of powders prepared with different milling times was observed by field-emission scanning electron microscope and optical microscope. The powders developed a fine, layered, homogeneous structure with milling times. The crystallization behavior showed that glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 628, 755 and 127K, respectively. The as-prepared amorphous TiCuNi powders were consolidated by spark plasma sintering process. Full densified TiCuNi samples were successfully produced by the spark plasma sintering process. Crystallization of the MA powders happened during sintering at 733K.

Alternative Sample Preparation Method for Large-Area Cross-Section View Observation of Lithium Ion Battery

  • Kim, Ji-Young;Jeong, Young Woo;Cho, Hye Young;Chang, Hye Jung
    • Applied Microscopy
    • /
    • 제47권2호
    • /
    • pp.77-83
    • /
    • 2017
  • Drastic development of ubiquitous devices requires more advanced batteries with high specific capacitance and high rate capability. Large-area microstructure characterization across the stacks of cathode, electrolyte and anode might reveal the origin of the instability or degradation of batteries upon cycling charge. In this study, sample preparation methods to observe the cross-section view of the electrodes for battery in SEM and several imaging tips are reviewed. For an accurate evaluation of the microstructure, ion milling which flats the surface uniformly is recommended. Pros and cons of cross-section polishing (CP) with Ar ion and focused ion beam (FIB) with Ga ion were compared. Additionally, a modified but new cross-section milling technique utilizing precision ion polishing system (PIPS) which can be an alternative method of CP is developed. This simple approach will make the researchers have more chances to prepare decent large-area cross-section electrode for batteries.

Atom Probe Tomography를 이용한 나노 스케일의 조성분석: II. 전자소자 및 나노재료에서의 응용 (Nano Scale Compositional Analysis by Atom Probe Tomography: II. Applications on Electronic Devices and Nano Materials)

  • 정우영;방찬우;장동현;구길호;박찬경
    • Applied Microscopy
    • /
    • 제41권2호
    • /
    • pp.89-98
    • /
    • 2011
  • Atom Probe Tomography는 원자 수준의 분해능으로 원소의 위치 및 조성 정보를 3차원으로 제공해 주는 분석 장비이다. APT의 우수한 성능에도 불구하고 반도체 등, 저전도성 물질 분석에는 그 동안 적용이 어려웠다. 그러나 특정 시료 내 위치의 시편을 가공할 수 있는 FIB 시편 제조법과 laser펄스를 이용한 전계증발법의 개발로 APT의 분석 영역이 반도체에서 절연체까지 크게 확대 되고 있다. 본 논문에서는 최근에 적용되기 시작한 MOS-FET, GaN LED, Si-Nanowire 등 전자소자에서의 APT분석 응용사례에 대하여 살펴보았다.

고 투과 C 형 개구를 이용한 나노 크기 패턴 구현 (Nano-size Patterning with a High Transmission C-shaped Aperture)

  • 박신증;김용우;이응만;한재원
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.108-115
    • /
    • 2007
  • We have designed a high transmission C-shaped aperture using finite differential time domain (FDTD) technique. The C-shaped aperture was fabricated in the aluminum thin film on a glass substrate using a focused ion beam (FIB) milling. Nano-size patterning was demonstrated with a vacuum contact device to keep tight contact between the Al mask and the photoresist. Using 405 nm laser, we recorded a 50 nm-size dot pattern on the photoresist with the aperture and analyzed the spot size dependent on the dose illuminated on the aperture.

Metalorganic chemical vapor deposition of semiconducting ZnO thin films and nanostructures

  • Kim Sang-Woo
    • 한국결정성장학회지
    • /
    • 제16권1호
    • /
    • pp.12-19
    • /
    • 2006
  • Metalorganic chemical vapor deposition (MOCYD) techniques have been applied to fabricate semiconducting ZnO thin films and nanostructures, which are promising for novel optoelectronic device applications using their unique multifunctional properties. The growth and characterization of ZnO thin films on Si and $SiO_2$ substrates by MOCYD as fundamental study to realize ZnO nanostructures was carried out. The precise control of initial nucleation processes was found to be a key issue for realizing high quality epitaxial layers on the substrates. In addition, fabrication and characterization of ZnO nanodots with low-dimensional characteristics have been investigated to establish nanostructure blocks for ZnO-based nanoscale device application. Systematic realization of self- and artificially-controlled ZnO nanodots on $SiO_2/Si$ substrates was proposed and successfully demonstrated utilizing MOCYD in addition with a focused ion beam technique.