Properties of $MgB_2$ Intragrain Nanobridges

$MgB_2$ 결정립 나노브릿지 특성에 관한 연구

  • Published : 2009.04.30

Abstract

Inter-grain nanobridges of the $MgB_2$ superconductor have been fabricated by focused-ion-beam(FIB) and their electrical transport properties were studied. The $MgB_2$ film was prepatterned into microbridges by a standard argon ion milling technique and then FIB-patterned into 100 nm$\times$100 nm bridges. Current-voltage characteristics showed a strong flux-flow type behavior at all temperatures with a trait of Josephson coupling near $T_c$. At low temperatures, the curves showed a two-step resistance-doubled transition with occasional hysteresis. The resistance-doubling transition is believed to be due to a two-channel flux-flow effect. The temperature-dependent critical current data showed $I_c(T){\propto}(1-T/T_c)^2$ near $T_c$, same as a normal barrier junction, and $I_c(T){\propto}(1-T/T_c)^{1.2}$ at low temperatures, similar to that of a film.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 K in magnesium diboride”, Nature, 410, 63-64 (2001). https://doi.org/10.1038/35065039
  2. H. Shimakage, K. Tsujimoto, Z. Wang, and M.Tonouchi, “All-$MgB_2$ tunnel junctions withaluminium nitride barriers”, Appl. Phys. Lett., 86,072512 (2005). https://doi.org/10.1063/1.1868871
  3. K. Ueda, S. Saito, K. Semba, and T. Makimoto,“All-$MgB_2$ Josephson tunnel junctions” Appl. Phys. Lett,. 86, 172502 (2005). https://doi.org/10.1063/1.1920411
  4. T. H. Kim and J. S. Moodera, “Magnesium diboridesuperconductor thin film tunnel junctions forsuperconductive electronics”, Appl. Phys. Lett., 100,113904 (2006).
  5. J. I. Kye, H. N. Lee, J. D. Park, S. H. Moon, and B.Oh, “Josephson effect in $MgB_2/Ag/MgB_2$ step-edgejunctions”, IEEE Trans. Appl. Supercond., 13, 1075-1078 (2003). https://doi.org/10.1109/TASC.2003.814159
  6. K. Chen, Y. Cui, Q. Li, X. X. Xi, S. A. Cybart, R. C.Dynes, X. Weng, E. C. Dickey, and J. M. Redwing,“Planar $MgB_2$ superconductor-normal-superconductorJosephson junctions fabricated using $MgB_2/TiB_2$bilayers”, Appl. Phys. Lett., 88, 222511 (2006). https://doi.org/10.1063/1.2208555
  7. G. Burnell, D.-J. Kang, H. N. Lee, S. H. Moon, B. Oh,and M. G. Blamire, “Planar superconductor-normalsuperconductorJosephson junctions in $MgB_2$”, Appl. Phys. Lett. 79, 3464-3466 (2001). https://doi.org/10.1063/1.1419041
  8. S. A. Cybart, K. Chen, Y. Cui, Q. Li, and X. X. Xi,and R. C. Dynes, “Planar $MgB_2$ Josephson junctionsand series arrays via nanolithography and iondamage”, Appl. Phys. Lett. 88, 0152509 (2005).
  9. A. Brinkman, D. Veldhuis, D. Mijatovic, G. Rijnders,D. H. A. Blank, H. Hilgenkamp, and H. Rogalla,“Superconducting quantum interference device basedon $MgB_2$ nanobridges”, Appl. Phys. Lett. 79, 2420-2422 (2001). https://doi.org/10.1063/1.1407864
  10. W. K. Seong, J. Y. Huh, W. N. Kang, J.-W. Kim,Y.-S. Kwon, N.-K. Yang, and J.-G. Park, “Growth ofepitaxial $MgB_2$ thick films with columnar structuresby using HPCVD” Chem. Vap. Deposition, 13, 680-683 (2007). https://doi.org/10.1002/cvde.200706636
  11. Soon-Gul Lee, Sung-Hak Hong, Won Nam Kang, and Dong Ho Kim, “$MgB_2$ grain boundary nanobridgesprepared by focused ion beam”, J. Appl. Phys. 105,013924 (2009). https://doi.org/10.1063/1.3063688
  12. T. M. Klapwijk, M. Sepers, and J. E. Mooij,“Regimes in the behaviour of superconductingmicrobridges”, J. Low Temp. Phys. 27, 801-835(1977). https://doi.org/10.1007/BF00655709
  13. See, for example, M. Tinkham, Introduction toSuperconductivity, 2nd ed., Dover Publications, NewYork, 1995, p. 124.