DOI QR코드

DOI QR Code

Alternative Sample Preparation Method for Large-Area Cross-Section View Observation of Lithium Ion Battery

  • Kim, Ji-Young (Advanced Analysis Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeong, Young Woo (Advanced Analysis Center, Korea Institute of Science and Technology (KIST)) ;
  • Cho, Hye Young (Advanced Analysis Center, Korea Institute of Science and Technology (KIST)) ;
  • Chang, Hye Jung (Advanced Analysis Center, Korea Institute of Science and Technology (KIST))
  • Received : 2017.06.12
  • Accepted : 2017.06.30
  • Published : 2017.06.30

Abstract

Drastic development of ubiquitous devices requires more advanced batteries with high specific capacitance and high rate capability. Large-area microstructure characterization across the stacks of cathode, electrolyte and anode might reveal the origin of the instability or degradation of batteries upon cycling charge. In this study, sample preparation methods to observe the cross-section view of the electrodes for battery in SEM and several imaging tips are reviewed. For an accurate evaluation of the microstructure, ion milling which flats the surface uniformly is recommended. Pros and cons of cross-section polishing (CP) with Ar ion and focused ion beam (FIB) with Ga ion were compared. Additionally, a modified but new cross-section milling technique utilizing precision ion polishing system (PIPS) which can be an alternative method of CP is developed. This simple approach will make the researchers have more chances to prepare decent large-area cross-section electrode for batteries.

Keywords

References

  1. Chang H H, Chang C C, Wu H C, Guo Z Z, Yang M H, Chiang Y P, Sheu S, and Wu N L (2006) Kinetic study on low-temperature synthesis of LiFePO4 via solid-state reaction. J. Power Sources 158, 550-556. https://doi.org/10.1016/j.jpowsour.2005.09.005
  2. Chen D, Indris S, Schulz M, Gamer B, and Monig R (2011) In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J. Power Sources 196, 6382-6387. https://doi.org/10.1016/j.jpowsour.2011.04.009
  3. Chen J J (2013) Recent progress in advanced materials for lithium ion batteries. Materials 6, 156-183. https://doi.org/10.3390/ma6010156
  4. Chung K Y, Yoon W S, McBreen J, Yang X Q, Oh S H, Shin H C, Cho W I, and Cho B W (2007) In situ X-ray diffraction studies on the mechanism of capacity retention improvement by coating at the surface of $LiCoO_2$. J. Power Sources 174, 619-623. https://doi.org/10.1016/j.jpowsour.2007.06.242
  5. Deng Y Y, He Z Y, Cao Q, Jing B, Wang X Y, and Peng X X (2017) A novel high-performance electrospun thermoplastic polyurethane/ poly(vinylidene fluoride)/polystyrene gel polymer electrolyte for lithium batteries. Acta Chim. Slov. 64, 95-101.
  6. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, and Jamnik J (2003) The role of carbon black distribution in cathodes for Li ion batteries. J. Power Sources. 119, 770-773.
  7. Ebner M, Marone F, Stampanoni M, and Wood V (2013) Visualization and quantification of electrochemical and mechanical degradation in li ion batteries. Science 342, 716-720. https://doi.org/10.1126/science.1241882
  8. Feng C Q, Chew S Y, Guo Z P, Wang J Z, and Liu H K (2007) An investigation of polypyrrole-LiV3O8 composite cathode materials for lithium-ion batteries. J. Power Sources 174, 1095-1099. https://doi.org/10.1016/j.jpowsour.2007.06.190
  9. Goodenough J B and Park K S (2013) The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167-1176. https://doi.org/10.1021/ja3091438
  10. Guy D, Lestriez B, and Guyomard D (2004) New composite electrode architecture and improved battery performance from the smart use of polymers and their properties. Adv. Mater. 16, 553-557. https://doi.org/10.1002/adma.200306075
  11. Houben M E, Barnhoorn A, Lie-A-Fat J, Ravestein T, Peach C J, and Drury M R (2016) Microstructural characteristics of the Whitby Mudstone Formation (UK). Mar. Petrol. Geol. 70, 185-200. https://doi.org/10.1016/j.marpetgeo.2015.11.011
  12. Houben M E, Barnhoorn A, Wasch L, Trabucho-Alexandre J, Peach C J, and Drury M R (2016) Microstructures of Early Jurassic (Toarcian) shales of Northern Europe. Int. J. Coal. Geol. 165, 76-89. https://doi.org/10.1016/j.coal.2016.08.003
  13. Indrikova M, Grunwald S, Golks F, Netz A, Westphal B, and Kwade A (2015) The morphology of battery electrodes with the focus of the conductive additives paths. J. Electrochem. Soc. 162, A2021-A2025. https://doi.org/10.1149/2.0441510jes
  14. Kang K S, Choi S, Song J, Woo S G, Jo Y N, Choi J, Yim T, Yu J S, and Kim Y J (2014) Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature. J. Power Sources 253, 48-54. https://doi.org/10.1016/j.jpowsour.2013.12.024
  15. Kawaguchi T, Nakamura H, and Watano S (2017) Parametric study of dry coating process of electrode particle with model material of sulfide solid electrolytes for all-solid-state battery. Powder Technol. 305, 241-249. https://doi.org/10.1016/j.powtec.2016.09.085
  16. Kim H, Han B, Choo J, and Cho J (2008) Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Edit. 47, 10151-10154. https://doi.org/10.1002/anie.200804355
  17. Koksbang R, Barker J, Shi H, and Saidi M Y (1996) Cathode materials for lithium rocking chair batteries. Solid State Ionics. 84, 1-21. https://doi.org/10.1016/S0167-2738(96)83001-3
  18. Liu H S, Foster J M, Gully A, Krachkovskiy S, Jiang M, Wu Y, Yang X Y, Protas B, Goward G R, and Botton G A (2016) Three-dimensional investigation of cycling-induced microstructural changes in lithiumion battery cathodes using focused ion beam/scanning electron microscopy. J. Power Sources 306, 300-308. https://doi.org/10.1016/j.jpowsour.2015.11.108
  19. Liu N, Lu Z D, Zhao J, McDowell M T, Lee H W, Zhao W T, and Cui Y (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187-192. https://doi.org/10.1038/nnano.2014.6
  20. Nam K W, Bak S M, Hu E Y, Yu X Q, Zhou Y N, Wang X J, Wu L J, Zhu Y M, Chung K Y, and Yang X Q (2013) Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 23, 1047-1063. https://doi.org/10.1002/adfm.201200693
  21. Otoyama M, Ito Y, Hayashi A, and Tatsumisago M (2016) Raman imaging for $LiCoO_2$ composite positive electrodes in all-solid-state lithium batteries using $Li_2S-P_2S_5$ solid electrolytes. J. Power Sources 302, 419-425. https://doi.org/10.1016/j.jpowsour.2015.10.040
  22. Palacin M R (2009) Recent advances in rechargeable battery materials: a chemist's perspective. Chem. Soc. Rev. 38, 2565-2575. https://doi.org/10.1039/b820555h
  23. Park K S, Son J T, Chung H T, Kim S J, Lee C H, Kang K T, and Kim H G (2004) Surface modification by silver coating for improving electrochemical properties of $LiFePO_4$. Solid State Commun. 129, 311-314. https://doi.org/10.1016/j.ssc.2003.10.015
  24. Vanimisetti S K, Ramakrishnan N (2012) Effect of the electrode particle shape in Li-ion battery on the mechanical degradation during chargedischarge cycling. P. I. Mech. Eng. C-J Mec. 226, 2192-2213. https://doi.org/10.1177/0954406211432668
  25. Wang F X, Xiao S Y, Li M X, Wang X W, Zhu Y S, Wu Y P, Shirakawa A, and Peng J (2015) A nanocomposite of $Li_2MnO_3$ coated by $FePO_4$ as cathode material for lithium ion batteries. J. Power Sources 287, 416-421. https://doi.org/10.1016/j.jpowsour.2015.04.034
  26. Xiao L F, Cao Y L, Xiao J, Wang W, Kovarik L, Nie Z M, and Liu J (2012) High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 48, 3321-3323. https://doi.org/10.1039/c2cc17129e
  27. Yoon W S, Chung K Y, McBreen J, Fischer D A, and Yang X Q (2007) Electronic structural changes of the electrochemically Li-ion deintercalated $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathode material investigated by X-ray absorption spectroscopy. J. Power Sources 174, 1015-1020. https://doi.org/10.1016/j.jpowsour.2007.06.214
  28. Yoon W S, Haas O, Muhammad S, Kim H, Lee W, Kim D, Fischer D A, Jaye C, Yang X Q, Balasubramanian M, and Nam K W (2014) In situ soft XAS study on nickel-based layered cathode material at elevated temperatures: A novel approach to study thermal stability. Sci. Rep. 4, 6827-6831.
  29. Zhang D, Haran B S, Durairajan A, White R E, Podrazhansky Y, and Popov B N (2000) Studies on capacity fade of lithium-ion batteries. J. Power Sources 91, 122-129. https://doi.org/10.1016/S0378-7753(00)00469-9
  30. Zhang J, Chang L, Wang F X, Xie D, Su Q M, and Du G H (2015) Ultrafine $SnO_2$ nanocrystals anchored graphene composites as anode material for lithium-ion batteries. Mater. Res. Bull. 68, 120-125. https://doi.org/10.1016/j.materresbull.2015.03.041
  31. Zhang Y, Zhang X G, Zhang H L, Zhao Z G, Li F, Liu C, and Cheng H M (2006) Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta. 51, 4994-5000. https://doi.org/10.1016/j.electacta.2006.01.043
  32. Zou B K, Zhang Y Y, Wang J Y, Liang X, Ma X H, and Chen C H (2015) Hydrothermally enhanced MnO/reduced graphite oxide composite anode materials for high performance lithium-ion batteries. Electrochim. Acta. 167, 25-31. https://doi.org/10.1016/j.electacta.2015.03.108

Cited by

  1. Polymer–metal coating for high contrast SEM cross sections at the deep nanoscale pp.2040-3372, 2018, https://doi.org/10.1039/C8NR06669H