• 제목/요약/키워드: Cross-section plane

검색결과 223건 처리시간 0.027초

Static Aeroelastic Response of Wing-Structures Accounting for In-Plane Cross-Section Deformation

  • Varello, Alberto;Lamberti, Alessandro;Carrera, Erasmo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.310-323
    • /
    • 2013
  • In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.

개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰 (A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis)

  • 조태진;황택진;이근호;조계성;이상배
    • 터널과지하공간
    • /
    • 제22권1호
    • /
    • pp.43-53
    • /
    • 2012
  • 개착면의 방향성과 규모가 점진적으로 변화되는 개착사면의 안정성을 지반의 암석학적, 구조적 및 역학적 특성을 종합적으로 고려한 횡단면 분석기법을 활용하여 분석하였다. 시추작업을 수행하여 획득한 코어시료를 관찰하여 사면지반의 암석학적 취약성을 조사하였으며, 시추공 내 BIPS 영상을 획득하여 사면 내부의 구조적 특성을 규명하였다. 시추코어 및 코어절리시료를 이용한 암석실험을 통해 사면 지반의 공학적 특성을 분석하였다. 평사투영해석을 수행하여 잠재적인 사면거동 양상과 거동유발 절리들을 분석하였으며, 거동유발 절리들의 트레이스 분포를 개착 형상이 고려된 횡단면상에 도시하였다. 횡단면에 분포된 평면파괴 절리들이 기저면을 형성하는 평면블록들을 절리 트레이스 분포를 고려하여 설정하였다. 횡단면 상에서 심도별 평면블록들의 안정성과 적정 안전율을 유지하기 위하여 요구되는 지보량을 산정하여 최적 사면 설계안 수립에 대한 횡단면 기법의 활용성을 고찰하였다.

테일러드블랭크 용접을 위한 전단 공정 연구 (A Study on Mechanical Shearing Process for Tailored Blank Welding)

  • 유병길;이경돈
    • Journal of Welding and Joining
    • /
    • 제17권2호
    • /
    • pp.66-75
    • /
    • 1999
  • Weld bead quality in tailored blank(TB) is critically affected by edge preparation of sheets. The edge quality of prepared sheets for TB can be classified into straightness and the cross section quality of sheared plane such as a ratio of shear face, shear plane angle, etc. In order to have a good edg quality for butt-welding sheets, precision shearing will be recommended. In this paper, the feasibility of a conventional mechanical shearing as the edge preparation for tailored blanks is studyied. It reveals that fine shearing may not be the unique solution as it is generally accepted. To obtain the good shearing condition with a conventional mechanical shearing, experiments were carried out using Tahuchi method. The major parameters affecting a sheared contour are the clearance between upper blade and lower blade, and shear angle. The optimal shearing condition yields a very good straightness along the entire length of the cut, which gives a butt joint gap less than 10% of the base material thickness. The good cross section of sheared plane is also achieved in the optimal shearing condition such as a ratio of the shear face above 65%, a cross section's shear plane angle above 85%, little burr, which is providing finally good weld beads.

  • PDF

단순변형율 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트 내 내향 난류유동 측정 (Measurement of Inward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section)

  • 김동철;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.765-770
    • /
    • 2000
  • Hot-wire measurements are reported on the developing turbulent flows subject to plane rate of strain in a rotating $90^{\circ}$ dog bend. The cross-section of the bend varies from $100mm{\times}50mm$ rectangular shape at the bend inlet gradually to the $50mm{\times}100mm$ shape at the bend outlet with remaining a constant area. Data signals from the rotating test section are transmitted through a slip ring to the personal computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynolds stress components were calculated from the equations which correlate the fluctuating and mean voltage values measured with rotating a slant type hot-wire into 6 orientations. The effects of Coriolis and centrifugal forces on the mean motions and turbulence structures are investigated with respect to rotational speed.

  • PDF

단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정 (Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section)

  • 오창민;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

Shear lag effects on wide U-section pre-stressed concrete light rail bridges

  • Boules, Philopateer F.;Mehanny, Sameh S.F.;Bakhoum, Mourad M.
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.67-80
    • /
    • 2018
  • Recently, U-section decks have been more and more used in metro and light rail bridges as an innovative concept in bridge deck design and a successful alternative to conventional box girders because of their potential advantages. U-section may be viewed as a single vent box girder eliminating the top slab connecting the webs, with the moving vehicles travelling on the lower deck. U-section bridges thus solve many problems like limited vertical clearance underneath the bridge lowest point, besides providing built-in noise barriers. Beam theory in mechanics assumes that plane section remains plane after bending, but it was found that shearing forces produce shear deformations and the plane section does not remain plane. This phenomenon leads to distortion of the cross section. For a box or a U section, this distortion makes the central part of the slab lagging behind those parts closer to the webs and this is known as shear lag effect. A sample real-world double-track U-section metro bridge is modelled in this paper using a commercial finite element analysis program and is analysed under various loading conditions and for different geometric variations. The three-dimensional finite element analysis is used to demonstrate variations in the transverse bending moments in the deck as well as variations in the longitudinal normal stresses induced in the cross section along the U-girder's span thus capturing warping and shear lag effects which are then compared to the stresses calculated using conventional beam theory. This comparison is performed not only to locate the distortion, warping and shear lag effects typically induced in U-section bridges but also to assess the main parameters influencing them the most.

도체 평판에서 소형 개구의 투과 단면적 (Transmission Cross Section of the Small Aperture in an Infinite Conducting Plane)

  • 고지환;박순우;조영기
    • 한국전자파학회논문지
    • /
    • 제30권4호
    • /
    • pp.300-306
    • /
    • 2019
  • 얇은 도체 평판에 소형 리지 원형 개구, H-형태 개구, U-형태 개구, 예루살렘 십자형 개구와 같은 다양한 투과 공진 개구에 대하여 개구 모양에 무관하게 투과 단면적은 해석적으로 $2G{\lambda}^2/4{\pi}$로 주어지게 된다. 이러한 표현식에 대해 MOM 방법을 사용하여 계산한 결과와 비교하여 일치함을 확인하였다. 또한 두꺼운 도체 평판 내에 투과 공진기 구조에 대해 투과 단면적을 연구했으며, 투과 효율 관점에서 이들 두 소형 개구 구조 간에 동등함을 보였다.

Free vibrations of circular arches with variable cross-section

  • Wilson, James F.;Lee, Byoung Koo;Oh, Sang Jin
    • Structural Engineering and Mechanics
    • /
    • 제2권4호
    • /
    • pp.345-357
    • /
    • 1994
  • The differential equations governing free, in-plane vibrations of linearly elastic circular arches with variable cross-sections are derived and solve numerically for quadratic arches with three types of rectangular cross sections. Frequencies, mode shapes, cross-sectional load distributions, and the effects of rotatory inertia on frequencies are reported. Experimental measurements of frequencies and their corresponding mode shapes agree closely with those predicted by theory. The numerical methods presented here for computing frequencies and mode shapes are efficient and reliable.

Effect of Three-dimensional Warping on Stiffness Constants of Closed Section Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권3호
    • /
    • pp.467-473
    • /
    • 2017
  • This paper focuses on the investigation of three-dimensional (3D) warping effect on the stiffness constants of composite beams with closed section profiles. A finite element (FE) cross-sectional analysis is developed based on the Reissner's multifield variational principle. The 3D in-plane and out-of-plane warping displacements, and sectional stresses are approximated as linear functions of generalized sectional stress resultants at the global level and as FE shape functions at the local sectional level. The classical elastic couplings are taken into account which include transverse shear and Poisson deformation effects. A generalized Timoshenko level $6{\times}6$ stiffness matrix is computed for closed section composite beams with and without warping. The effect of neglecting the 3D warping on stiffness constants is shown to be significant indicating large errors as high as 93.3%.

Isolated RC wall subjected to biaxial bending moment and axial force

  • Park, Honggun
    • Structural Engineering and Mechanics
    • /
    • 제9권5호
    • /
    • pp.469-482
    • /
    • 2000
  • A numerical study using nonlinear finite element analysis is performed to investigate the behavior of isolated reinforced concrete walls subjected to combined axial force and in-plane and out-of-plane bending moments. For a nonlinear finite element analysis, a computer program addressing material and geometric nonlinearities was developed. Through numerical studies, the internal force distribution in the cross-section is idealized, and then a new design method, different from the existing methods based on the plane section hypothesis was developed. According to the proposed method, variations in the interaction curve of the in-plane bending moment and axial force depends on the range of the permissible axial force per unit length, that is determined by a given amount of out-of-plane bending moment. As the out-of-plane bending moment increases, the interaction curve shrinks, indicating a decrease in the ultimate strength. The proposed method is then compared with an existing method, using the plane section hypothesis. Compared with the proposed method, the existing method overestimates the ultimate strength for the walls subjected to low out-of-plane bending moments, while it underestimates the ultimate strength for walls subject to high out-of-plane bending moments. The proposed method can address the out-of-plane local behavior of the individual wall segments that may govern the ultimate strength of the entire wall.