• Title/Summary/Keyword: Flux Feedback

Search Result 130, Processing Time 0.025 seconds

Changes in Fire Characteristics according to the Distance Between the Fire Source and Sidewall in a Reduced-Scale Compartment (축소 구획실에서 화원과 측벽의 거리에 따른 화재특성 변화)

  • Yun, Hong-Seok;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.50-59
    • /
    • 2019
  • Experimental and numerical studies on the fire characteristics according to the distance between the fire source and sidewall under the over-ventilated fire conditions. A 1/3 reduced ISO 9705 room was constructed and spruce wood cribs were used as fuel. Fire Dynamics Simulator (FDS) was used for fire simulations to understand the phenomenon inside the compartment. As a result, the mass loss rate and heat release rate were increased due to the thermal feedback effect of the wall in the compartment fire compared to the open fire. As the distance between the fire source and sidewall was reduced, the major fire characteristics, such as maximum mass loss rate, heat release rate, fire growth rate, temperature, and heat flux, were increased despite the limitations of air entrainment into the flame. In particular, a significant change in these physical quantities was observed for the case of a fire source against the sidewall. In addition, the vertical distribution of temperature was changed considerably due to a change in the flow structure inside the compartment according to the distance between the fire source and sidewall.

Measurement strategy of a system parameters for the PI current control of the A.C. motor (교류 전동기의 PI 전류제어를 위한 시스템 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • This Paper propose the method that measure main system parameters for PI(proportional-integral) current control of a.c. motor adopting the vector control technique. For current control, the PI control input is could be tuning by several selective methods. Among the several methods, the method that using the main system parameters, wire resistance and inductance, are frequently used. In this study, the technique to dissect and measure these two system parameters through the results of simple feedback control. This analytic measurement method is measuring parameters step by step dissecting the results of P control using simple proportional feedback gain about the unit step or multiple step reference command. This strategy is an real time analytic measurement method that calculate current control gains of torque component and flux component both for vector control of A.C. motor without introducing the further measurement circuits and complex measuring algorithms.

Feedback Processes Modulating the Sensitivity of Atlantic Thermohaline Circulation to Freshwater Forcing Timescales

  • Hyo-Jeong Kim;Soon-Il An;Soong-Ki Kim;Jae-Heung Park
    • Journal of Climate Change Research
    • /
    • v.34 no.12
    • /
    • pp.5081-5092
    • /
    • 2021
  • Paleoproxy records indicate that abrupt changes in thermohaline circulation (THC) were induced by rapid meltwater discharge from retreating ice sheets. Such abrupt changes in the THC have been understood as a hysteresis behavior of a nonlinear system. Previous studies, however, primarily focused on a near-static hysteresis under fixed or slowly varying freshwater forcing (FWF), reflecting the equilibrated response of the THC. This study aims to improve the current understanding of transient THC responses under rapidly varying forcing and their dependency on forcing time scales. The results simulated by an Earth system model suggest that the bifurcation is delayed as the forcing time scale is shorter, causing the Atlantic meridional overturning circulation collapse and recovery to occur at higher and lower FWF values, respectively. The delayed shutdown/recovery occurs because bifurcation is determined not by the FWF value at the time but by the total amount of freshwater remaining over the THC convection region. The remaining freshwater amount is primarily determined by the forcing accumulation (i.e., time-integrated FWF), which is modulated by the freshwater/salt advection by ocean circulations and freshwater flux by the atmospheric hydrological cycle. In general, the latter is overwhelmed by the former. When the forced freshwater amount is the same, the modulation effect is stronger under slowly varying forcing because more time is provided for the feedback processes.

The Limited Impact of AGN Outflows: IFU study of 20 local AGNs

  • Bae, Hyun-Jin;Woo, Jong-Hak;Karouzos, Marios;Gallo, Elena;Flohic, Helene;Shen, Yue;Yoon, Suk-Jin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.28.1-28.1
    • /
    • 2017
  • To investigate AGN outflows as a tracer of AGN feedback on the host galaxies, we perform integral-field spectroscopy of 20 type 2 AGNs at z<0.1 using the Magellan/IMACS and the VLT/VIMOS. The observed objects are luminous AGNs with the [O III] luminosity >$10^{41.5}erg/s$, and exhibit strong outflow signatures in the [O III] kinematics. We obtain the maps of the narrow and broad components of [O III] and $H{\alpha}$ lines by decomposing the emission-line profile. The broad components in both [O III] and $H{\alpha}$ represent the non-gravitational kinematics, (i.e., gas outflows), while the narrow components represent the gravitational kinematics (i.e., rotational disks), especially in $H{\alpha}$. By using the spatially integrated spectra within the flux-weighted size of the narrow-line region, we estimate the outflow energetics. The ionized gas mass is $(1.0-38.5){\times}10^5M_{\odot}$, and the mean mass outflow rate is $4.6{\pm}4.3M_{\odot}/yr$, which is a factor of ~260 higher than the mean mass accretion rate $0.02{\pm}0.01M_{\odot}/yr$. The mean energy injection rate is $0.8{\pm}0.6%$ of the AGN bolometric luminosity Lbol, while the mean momentum flux is $(5.4{\pm}3.6){\times}L_{bol}/c$, except for two most kinematically energetic AGNs. The estimated energetics are consistent with the expectations for energy-conserving outflows from AGNs, yet we do not find any supporting evidence of instantaneous star-formation quenching due to the outflows.

  • PDF

The characteristics of DROS magnetometer and MCG measurement (DROS 자력계의 동작특성 및 심자도 측정)

  • Kang, C.S.;Lee, Y.H.;Kwon, H.;Kim, J.M.;Yu, K.K.;Park, Y.K.;Lee, S.G.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.164-168
    • /
    • 2007
  • We developed a SQUID magnetometer based on Double Relaxation Oscillation SQUID(DROS) for measuring magnetocardiography(MCG). Since DROS provides a 10 times larger flux-to-voltage transfer coefficient than the conventional DC-SQUID, simple flux-locked loop electronics could be used for SQUID operation. Especially, we adopted an external feedback to eliminate the magnetic coupling with adjacent channels. When the DROS magnetometer was operated inside a magnetically shielded room, average magnetic field noise was about 5 $fT/^{\surd}Hz$ at 100 Hz. Using the DROS magnetometer, we constructed a multichannel MCG system. The system consisted of 61 magnetometers are arranged in a hexagonal structure and measures a vertical magnetic-field component to the chest surface. The distance between adjacent channels is 26 mm and the magnetometers cover a circular area with a diameter of 208 mm. We recorded the MCG signals with this system and confirmed the magnetic field distribution and the myocardinal current distribution.

  • PDF

Climate-Smart Agriculture (CSA)-Based Assessment of a Rice Cultivation System in Gimje, Korea (한국 김제의 벼 경작 시스템의 기후스마트농업 (Climate-Smart Agriculture) 기반의 평가)

  • Talucder, Mohammad Samiul Ahsan;Kim, Joon;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.235-250
    • /
    • 2021
  • The overarching question of this study is how a typical rice cultivation system in Gimje, Korea was keeping up with the triple-win challenge of climate-smart agriculture (CSA). To answer this question, we have employed (1) quantitative data from direct measurement of energy, water, carbon and information flows in and out of a rice cultivation system and (2) appropriate metrics to assess production, efficiency, GHG fluxes, and resilience. The study site was one of the Korean Network of Flux measurement (KoFlux) sites (i.e., GRK) located at Gimje, Korea, managed by National Academy of Agricultural Science, Rural Development Administration. Fluxes of energy, water, carbon dioxide (CO2) and methane (CH4) were directly measured using eddy-covariance technique during the growing seasons of 2011, 2012 and 2014. The production indicators include gross primary productivity (GPP), grain yield, light use efficiency (LUE), water use efficiency (WUE), and carbon uptake efficiency (CUE). The GHG mitigation was assessed with indicators such as fluxes of carbon dioxide (FCO2), methane (FCH4), and nitrous oxide (FN2O). Resilience was assessed in terms of self-organization (S), using information-theoretic approach. Overall, the results demonstrated that the rice cultivation system at GRK was climate-smart in 2011 in a relative sense but failed to maintain in the following years. Resilience was high and changed little for three year. However, the apparent competing goals or trade-offs between productivity and GHG mitigation were found within individual years as well as between the years, causing difficulties in achieving the triple-win scenario. The pursuit of CSA requires for stakeholders to prioritize their goals (i.e., governance) and to practice opportune interventions (i.e., management) based on the feedback from real-time assessment of the CSA indicators (i.e., monitoring) - i.e., a purpose-driven visioneering.

Proving the Evolution of Relativistic Jet of Radio-Loud AGN, OVV 1633+382

  • Ro, Hyunwook;Sohn, Bong Won;Chung, Aeree;Krichbaum, Thomas P.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.37.1-37.1
    • /
    • 2015
  • It is suggested that relativistic jets associated with active galactic nuclei (AGNs) can have great impacts on the evolution of the host galaxy. However, the physical properties of AGN jets including the formation mechanism are not well known to date, and hence the AGN feedback on the host galaxy is yet poorly understood. OVV 1633+382 as a highly variable AGN source (a.k.a. blazer) with a compact core and very well developed jet components is an excellent laboratory to study the jet formation mechanism of radio-loud AGN. Near 2002, a major flare was reported at mm wavelength with a dramatic increase of the flux, which is likely to be followed by a dense and bright outflow. In order to probe the evolution of the innermost region of this radio-loud AGN, we have monitored using the Very Large Baseline Array (VLBA) and the Effelsberg 100m single-dish radio telescope in 12 epochs from 2002 and 2005. The observations were conducted at 22, 43 and 86 GHz in full polarization mode. In this work, we present the intensity and spectral index maps at 22 and 43 GHz from our monitoring observations. We probe the kinematics and geometry of individual jet components to discuss the evolution of the jet.

  • PDF

COMPARISON OF TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOWS OVER A SINGLE CAVITY (단일 공동주위의 2차원과 3차원 초음속 유동 비교)

  • Woo C.H.;Kim J.S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.235-238
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-Dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k - w turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in cavities. Numerical method is upwind TVD scheme based on the flux vector split with the Van Leer limiters, and time accuracy is used explicit 4th stage Runge-Kutta scheme. Cavity flows are Comparison of two- and three-dimensional. The cavity has a L/D ratio of 3 for two-dimensional case. and same L/D and W/D ratio is 1 for three-dimensional case. The Mach and Reynolds numbers are held constant at 1.5 and 450000 respectively. For the three-dimensional case, the flow field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follow Rossiter's formula. On the other hand, the self-sustained oscillating flow transitions to a 'wake mode' for the two-dimensional simulation, with more violent fluctuations inside the cavity.

  • PDF

TWO- AND THREE-DIMENSIONAL SUPERSONIC TURBULENT FLOW OVER A SINGLE CAVITY (단일 공동 주위의 2차원 및 3차원 초음속 난류 유동 분석)

  • Woo C. H.;Kim J. S.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.51-58
    • /
    • 2005
  • The unsteady supersonic flow over two- and three-dimensional cavities has been analyzed by the integration of unsteady Reynolds-Averaged Navier-Stokes(RANS) with the k-$\omega$ turbulence model. The unsteady flow is characterized by the periodicity due to the mutual relation between the shear layer and the internal flow in the cavity. An explicit 4th order Runge-Kutta scheme and an upwind TVD scheme based on the flux vector split with the van Leer limiters are used for time and space discritizations, respectively. The cavity has a L/D ratio of 3 for two-dimensional case, and same L/D and W/D ratio of I for three-dimensional case. The Mach and Reynolds numbers are 1.5 and 450000 respectively. In the three-dimensional flow, the field is observed to oscillate in the 'shear layer mode' with a feedback mechanism that follows Rossiter's formula. In the two-dimensional simulation, the self-sustained oscillating flow has more violent fluctuation inside the cavity. The primary fluctuating frequencies of two- and three- dimensional flow agree very well with the 2nd mode of Rossiter's frequency. In the three-dimensional flow, the 1st mode of frequency could be seen.

The High Efficiency Operating Characteristics of the Induction Motor for Extended Range Electric Vehicle Applications (확장영역 전기자동차 응용을 위한 유도전동기의 고효율 운전 특성)

  • Ryu, Doo-young;Shon, Jin-geun;Jeon, Hee-jong;Choi, Uk-don
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.273-279
    • /
    • 2016
  • In this paper, a high-performance control of the induction motor for electric car was implemented to escape dependence of the rare earth magnet. Proposed high-efficiency control algorithm is a Direct Rotor Field-Oriented Control method that is insensitive to the fluctuation of motor parameters. In the DRFOC method, we need to compensate fluctuation of stator transient inductance and magnetizing inductance caused by the magnetic saturation of induction motor in high-speed area. This paper proposes Back-EMF Observer based on stator current estimator of Luenberger style. Motor control system applied the Voltage Feedback Flux Weakening Control method for high-speed operation. The proposed algorithm was verified through tests by the power train of Extended Range Electric Vehicle consists of induction motor and differential gear.