• Title/Summary/Keyword: Flutter Speed

Search Result 105, Processing Time 0.019 seconds

Adaptive and Robust Aeroelastic Control of Nonlinear Lifting Surfaces with Single/Multiple Control Surfaces: A Review

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.285-302
    • /
    • 2010
  • Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical results obtained with the various control strategies.

Transonic/Supersonic Nonlinear Aeroelastic Analysis of a Complete Aircraft Using High Speed Parallel Processing Technique (고속 병렬처리 기법을 이용한 전기체 항공기 형상의 천음속/초음속 비선형 공탄성 해석)

  • Kim, Dong-Hyun;Kwon, Hyuk-Jun;Lee, In;Kwon, Oh-Joon;Paek, Seung-Kil;Hyun, Yong-Hee
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.8
    • /
    • pp.46-55
    • /
    • 2002
  • A nonlinear aeroelastic analysis system in transonic and supersonic flows has been developed using high speed parallel processing technique on the network based PC-clustered machines. This paper includes the coupling of advanced numerical techniques such as computational structural dynamics (CSD), finite element method (FEM) and computational fluid dynamics (CFD). The unsteady Euler solver on dynamic unstructured meshes is employed and coupled with computational aeroelastic solvers. Thus it can give very accurate engineering data in the structural and aeroelastic design of flight vehicles. To show the great potential of useful application, transonic and supersonic flutter analyses have been conducted for a complete aircraft model under developing in Korea.

Dynamics of an Axially Moving Bernoulli-Euler Beam: Spectral Element Modeling and Analysis

  • Hyungmi Oh;Lee, Usik;Park, Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.395-406
    • /
    • 2004
  • The spectral element model is known to provide very accurate structural dynamic characteristics, while reducing the number of degree-of-freedom to resolve the computational and cost problems. Thus, the spectral element model for an axially moving Bernoulli-Euler beam subjected to axial tension is developed in the present paper. The high accuracy of the spectral element model is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, wave characteristics, and the static and dynamic stabilities of a moving beam are investigated.

An Improvement of Torque Characteristics of Permanent Magnet Flat Type DC Brushless Motor (영구자석 편평형 DC 브러시레스 전동기의 토오크 특성 개선)

  • 임달호;임태빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.11
    • /
    • pp.1153-1162
    • /
    • 1990
  • The torque ripple reduction method is studied to improve the speed fluctuation of permanent magnet flat type brushless DC motors. To reduce the torque ripple, this study developed the compensation method of the 5'th harmonics component of air gap flux waveform which pass through the driving coils. 1/2 inch VTR was considered. As the result of this study, we can reduce the torque ripple and the speed fluctuation of the capstan motor about 20% then before and we can obtain not only better characteristics of wow/flutter but more useful capstan motors which can be applied in the multi-function VTRs.

  • PDF

Vibration Characteristics of CD and DVD Disks (CD 및 DVD 디스크의 진동 특성)

  • 이승엽;임효석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.998-1003
    • /
    • 2003
  • The aerodynamically excited vibration and natural frequency of rotating CD and DVD disks are analytically and experimentally studied in this paper The theoretical analysis uses a fluid-structure model where the aerodynamic effects are represented in terms of elastic, lift and damping components. The explicit expression on natural frequency of the air coupled disk is obtained as functions of the three aerodynamic coefficients. The experiments performed using a vacuum chamber and CD/DVD disks rotating in vacuum, open air and enclosure give three main results. One is that the aerodynamic effect by the surrounding air reduces the natural frequencies and critical speeds of the vibration modes. The second is that natural frequency of disks rotating in open air is larger than that in enclosure. Finally, it is shown that the disk vibration is reduced as the gap between the disk and the rigid wall decreases.

  • PDF

Wind tunnel study of wind structure at a mountainous bridge location

  • Yan, Lei;Guo, Zhen S.;Zhu, Le D.;Flay, Richard G.J.
    • Wind and Structures
    • /
    • v.23 no.3
    • /
    • pp.191-209
    • /
    • 2016
  • Wind tunnel tests of a 1/2200-scale mountainous terrain model have been carried out to investigate local wind characteristics at a bridge location in southeast Tibet, China. Flows at five key locations on the bridge at deck level were measured for 26 directions. It was observed that wind characteristics (including mean wind velocity and overall turbulence intensity) vary significantly depending on the approaching wind direction and measurement position. The wind inclination angle measured in the study fluctuated between $-18^{\circ}$ and $+16^{\circ}$ and the ratio of mean wind velocity to reference wind velocity was small when the wind inclination angles were large, especially for positive wind inclination angles. The design standard wind speed and the minimum critical wind speed for flutter rely on the wind inclination angle and should be determined from the results of such tests. The variation of wind speed with wind inclination angles should be of the asymmetry step type. The turbulence characteristics of the wind were found to be similar to real atmospheric flows.

Mechanical Properties and Wind Energy Harvesting Characteristics of PZT-Based Piezoelectric Ceramic Fiber Composites (PZT계 압전 세라믹 파이버 복합체의 기계적 물성과 압전 풍력 에너지 하베스팅 특성)

  • Lee, Min-Seon;Park, Jin-woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.2
    • /
    • pp.90-98
    • /
    • 2021
  • Piezoelectric ceramic fiber composite (PCFC) was fabricated using a planar electrode printed piezoelectric ceramic fiber driven in transverse mode for small-scale wind energy harvester applications. The PCFC consisted of an epoxy matrix material and piezoelectric ceramic fibers sandwiched by interdigitated electrode (IDE) patterned polyimide films. The PCFC showed an excellent mechanical performance under a continuous stress. For the fabrication of PCB cantilever harvester, five -PCFCs were vertically attached onto a flexible printed circuit board (PCB) substrate, and then PCFCs were serially connected through a printed Cu circuit. The energy harvesting performance was evaluated applying an inverted structure, which imples its free leading edge located at an open end but the trailing edge at a clamped end, to enhance strain energy in a wind tunnel. The output voltage of the PCB cantilever harvester was increased as the wind speed increased. The maximum output power was 17.2 ㎼ at a resistance load of 200 ㏀ and wind speed of 9 m/s. It is considered that the PCB cantilever energy harvester reveals a potential use for wind energy harvester applications.

Aeroelastic Analysis of a Wing with Freeplay Considering Effects of Angle-of-Attack (받음각 효과를 고려한 유격이 있는 날개의 공탄성 해석)

  • Kim Jong-Yun;Yoo Jae-Han;Park Young-Keun;Lee In
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.295-300
    • /
    • 2005
  • The freeplay, one of the concentrated structural nonlinearities, is inevitable for control surfaces of a real air vehicle due to normal wear of components and manufacturing mismatches. Also aerodynamic nonlinearities caused by a shock wave occur in transonic region. In practice, these nonlinearities induce the limit cycle oscillation (LCO) and decrease the transonic flutter speed. In this study, the fictitious mass method is used to apply a modal approach to nonlinear structural models due to freeplay. The transonic small-disturbance (TSD) equation is used to calculate unsteady aerodynamic forces in transonic region. Nonlinear aeroelastic time responses are predicted by the coupled time integration method (CTIM). This method was also applied to a 3D all-movable control wing to investigate its nonlinear aeroelastic responses. The angle of attack effect on the LCO characteristics has been found to be closely related with the initial pitching moment.

  • PDF

A Continuous Robust Control Strategy for the Active Aeroelastic Vibration Suppression of Supersonic Lifting Surfaces

  • Zhang, K.;Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.210-220
    • /
    • 2012
  • The model-free control of aeroelastic vibrations of a non-linear 2-D wing-flap system operating in supersonic flight speed regimes is discussed in this paper. A novel continuous robust controller design yields asymptotically stable vibration suppression in both the pitching and plunging degrees of freedom using the flap deflection as a control input. The controller also ensures that all system states remain bounded at all times during closed-loop operation. A Lyapunov method is used to obtain the global asymptotic stability result. The unsteady aerodynamic load is considered by resourcing to the non-linear Piston Theory Aerodynamics (PTA) modified to account for the effect of the flap deflection. Simulation results demonstrate the performance of the robust control strategy in suppressing dynamic aeroelastic instabilities, such as non-linear flutter and limit cycle oscillations.

Dynamics of an Axially Moving Timoshenko Beam (축 방향으로 이동하는 티모센코보의 동특성 해석)

  • Kim, Joo-Hong;Oh, Hyung-Mi;Lee, U-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1066-1071
    • /
    • 2002
  • The use of frequency-dependent spectral element matrix (or exact dynamic stiffness matrix) in structural dynamics is known to provide very accurate solutions, while reducing the number of degrees-of-freedom to resolve the computational and cost problems. Thus, in the present paper, the spectral element model is formulated for the axially moving Timoshenko beam under a uniform axial tension. The high accuracy of the present spectral element is then verified by comparing its solutions with the conventional finite element solutions and exact analytical solutions. The effects of the moving speed and axial tension on the vibration characteristics, the dispersion relation, and the stability of a moving Timoshenko beam are investigated, analytically and numerically.

  • PDF