• Title/Summary/Keyword: Fluoride uptake

Search Result 32, Processing Time 0.021 seconds

Improved Copper Ion Recovery Efficiency through Surface Modification of Membranes in the Electrodialysis/Solvent Extraction Process (전기투석/용매추출 공정에서 멤브레인 표면 개질을 통한 구리 이온의 회수 효율 향상)

  • Joongwon, Park;Rina, Kim;Hyunju, Lee;Min-seuk, Kim;Hiesang, Sohn
    • Membrane Journal
    • /
    • v.32 no.6
    • /
    • pp.486-495
    • /
    • 2022
  • This study presents the improved recovery efficiency of rare metal ions through the modified separation membrane wettability and hydrogen ion permeation in the anion exchange membrane (AEM) under the recovery process of combined electrodialysis and solvent extraction. Specifically, the wettability of the separator was enhanced by hydrophilic modification on one separator surface through polydopamine (PDA) and lipophilic modification on the other surface through SiO2 or graphene oxide (GO). In addition, the modified surface of AEM with polyethyleneimine (PEI), PDA, poly(vinylidene fluoride) (PVDF), etc. reduces the water uptake and modify the pore structure for proton ions generation. The suppressed transport resulted in the reduced hydrogen ion permeation. In the characterization, the surface morphology, chemical properties and composition of membrane or AEM were analyzed with Scanning Electron Microscopy (SEM) and Fourier Transform-Infrared Spectroscopy (FT-IR). Based on the analyses, improved extraction and stripping and hydrogen ion transport inhibition were demonstrated for the copper ion recovery system.

Trans-Aortic Flow Turbulence and Aortic Valve Inflammation: A Pilot Study Using Blood Speckle Imaging and 18F-Sodium Fluoride Positron Emission Tomography/Computed Tomography in Patients With Moderate Aortic Stenosis

  • Soyoon Park;Woo-Baek Chung;Joo Hyun O;Kwan Yong Lee;Mi-Hyang Jung;Hae-Ok Jung;Kiyuk Chang;Ho-Joong Youn
    • Journal of Cardiovascular Imaging
    • /
    • v.31 no.3
    • /
    • pp.145-149
    • /
    • 2023
  • BACKGROUND: 18F-sodium fluoride positron emission tomography/computed tomography (18F-NaF PET/CT) has been proven to be useful in identification of microcalcifications, which are stimulated by inflammation. Blood speckle imaging (BSI) is a new imaging technology used for tracking the flow of blood cells using transesophageal echocardiography (TEE). We evaluated the relationship between turbulent flow identified by BSI and inflammatory activity of the aortic valve (AV) as indicated by the 18F-NaF uptake index in moderate aortic stenosis (AS) patients. METHODS: This study enrolled 18 moderate AS patients diagnosed within the past 6 months. BSI within the aortic root was acquired using long-axis view TEE. The duration of laminar flow and the turbulent flow area ratio were calculated by BSI to demonstrate the degree of turbulence. The maximum and mean standardized uptake values (SUVmax, SUVmean) and the total microcalcification burden (TMB) as measured by 18F-NaF PET/CT were used to demonstrate the degree of inflammatory activity in the AV region. RESULTS: The mean SUVmean, SUVmax, and TMB were 1.90 ± 0.79, 2.60 ± 0.98, and 4.20 ± 2.18 mL, respectively. The mean laminar flow period and the turbulent area ratio were 116.1 ± 61.5 msec and 0.48 ± 0.32. The correlation between SUVmax and turbulent flow area ratio showed the most positive and statistically significant correlation, with a Pearson's correlation coefficient (R2) of 0.658 and a p-value of 0.014. CONCLUSIONS: The high degree of trans-aortic turbulence measured by BSI was correlated with severe AV inflammation.

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries (열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발)

  • Kim, Ki Jae
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.3
    • /
    • pp.49-54
    • /
    • 2017
  • We develop a ceramic composite separator prepared by coating $ZrO_2$ nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer on a polyvinyl alcohol (PVA) mechanical support prepared by electrospinning technique to improve thermal properties. The gurley number of the ceramic composite separator shows much lower value than that of a PE separator even though it possesses the polymeric coating layer with ceramic nanoparticles. In addition, the proposed sample shows higher electrolyte uptake than PE separator, leading to enhancing the ionic conductivity of the proposed sample and, by extension, the rate discharge properties of lithium ion batteries. Thermal stability of the ceramic composite separator is dramatically improved without any degradation in electrochemical performance compared to the performance of conventional PE separators.

Preparation of Novel Polyvinylidene Fluoride (PVdF) Cation Exchange Heterogeneous Membrane and Their Adsorption Properties of Ion Selectivity (Polyvinylidene Fluoride (PVDF) 양이온 불균질막 제조 및 이온선택 흡착 특성)

  • Jeong, Min Ho;Ko, Dea Young;Hwang, Taek Sung
    • Membrane Journal
    • /
    • v.25 no.5
    • /
    • pp.431-439
    • /
    • 2015
  • The study was evaluated and compared to commercial heterogeneous membrane in order to make cation exchange membrane set up the optimal preparing condition. The research findings show that ion exchange resin was added more than 40 wt% in order to show chemical properties of HPVDF higher than commercial heterogeneous membrane. But ion exchange resin was added less than 40 wt% in order to show mechanical properties of HPVDF higher than commercial heterogeneous membrane. According to conditions above, Electrical resistance was $1.83{\Omega}{\cdot}cm^{-1}$, water uptake was 79%, ion exchange capacity was 1.60 meq/g, and burst strength was 0.97 MPa. Also The TDS remove efficiency was measured by approximately 40%.

Preparation and Characterization of Proton Conducting Composite Membranes From P(VDF-CTFE)-g-PSPMA Graft Copolymer and Heteropolyacid

  • Seo, Jin-Ah;Roh, Dong-Kyu;Koh, Jong-Kwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Proton conducting composite membranes were prepared by solution blending of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(sulfopropyl methacrylate) (P(VDF-CTFE)-g-PSPMA) graft copolymer and heteropolyacid (HPA). The P(VDF-CTFE)-g-PSPMA graft copolymer was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of P(VDF-CTFE). FT-IR spectroscopy revealed that HPA nanoparticles were incorporated into the graft copolymer via hydrogen bonding interactions. The water uptake of membranes continuously decreased with increasing HP A concentration up to 45wt%, after which it slightly increased. It is presumably due to the decrease in number of water absorption sites due to hydrogen bonding interaction between the HP A particles and the polymer matrix. The proton conductivity of membranes increased with increasing HPA concentration up to 45wt%, resulting from both the intrinsic conductivity of HP A particles and the enhanced acidity of the sulfonic acid of the graft copolymer.

Purification and characterization of a 33 kDa serine protease from Acanthamoeba lugdunensis KA/E2 isolated from a Korean keratitis patient

  • Kim, Hyo-Kyung;Ha, Young-Ran;Yu, Hak-Sun;Kong, Hyun-Hee;Chung, Dong-Il
    • Parasites, Hosts and Diseases
    • /
    • v.41 no.4
    • /
    • pp.189-196
    • /
    • 2003
  • In order to evaluate the possible roles of secretory proteases in the pathogenesis of amoebic keratitis, we purified and characterized a serine protease secreted by Acanthamoeba lugdunensis KA/E2, isolated from a Korean keratitis patient The ammonium sulfate-precipitated culture supernatant of the isolate was purified by sequential chromatography on CM-Sepharose, Sephacryl S-200, and mono Q-anion exchange column. The purified 33 kDa protease had a pH optimum of 8.5 and a temperature optimum of $55^{\circ}C$. Phenylmethylsulfonylfluoride and 4-(2-Aminoethyl)-benzenesulfonyl-fluoride, both serine protease specific inhibitors, inhibited almost completely the activity of the 33 kDa protease whereas other classes of inhibitors did not affect its activity. The 33 kDa enzyme degraded various extracellular matrix proteins and serum proteins. Our results strongly suggest that the 33 kDa serine protease secreted from this keratopathogenic Acanthamoeba play important roles in the pathogenesis of amoebic keratitis, such as in corneal tissue invasion, immune evasion and nutrient uptake.

A QUANTITATIVE STUDY OF THE CHANCE OF CALCIUM, PHOSPHATE, FLUORIDE USING EPMA AFTER IN VITRO DEMINERALIZATION AND REMINERALIZATION OF HUMAN TOOTH ENAMEL (법랑질 표면의 탈회 및 재광화 후 EPMA (electron probe micro-analysis)를 이용한 칼슘, 인, 불소 변화의 정량적 분석)

  • Hong, Kyoung-Sik;Hur, Bock;Lee, Chan-Young;Keum, Ki-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.372-378
    • /
    • 2001
  • The aim of this in vitro study was to analyze the composition of human tooth enamel in terms of three components, Ca, P, and F after demineralization and remineralization in acid buffer solution. A total of 8 human premolars without any defects and cracks were selected and buccal and lingual sides of the teeth were cleaned with an ultrasonic device and pumice without fluoride 5$\times$5mm windows were opened, and other areas were completely covered with 3-coats of nail varnish to prevent from being in contact with demineralized and remineralized solutions. After demineralization process, each tooth was sectioned into two slices, highly polished one of them with$\gamma$-alumina, and then analyzed the composition of the demineralized tooth with EPMA(electron probe micro-analyzer). The other slices were put into the remineralized solution for 10 days, polished, and analyzed in the same manner. These data were statistically analyzed with one sample t-test(p<0.05). The results were as follows. 1. Normal tooth enamel consists of 49.76% Ca, 39.80% P, and 0.28% F. 2. After demineralization, percentage of Ca and P ratio were decreased by about 5.57 and 5.07% respectively. Percentage of F ratio was also decreased by about 0.01%, which was not statistically significant. 3. After remineralization, percentage of Ca, P increased about by 4.47 and 4.35% respectively Percentage of F decreased by about 0.01%, which was not statistically significant. In conclusion, remineralized solution used in our study has the potential to induce the uptake the Ca and P into the pore sites of the demineralized enamel. But, in the oral cavity. there were rapid temperature change, organic matrix that inhibits the movement of the ions, and limitation of continuous contact with this remineralized solution. Therefore, further in vivo study is necessary.

  • PDF

Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys (불소고분자내 유기용매의 비-픽 확산)

  • 이상화
    • Polymer(Korea)
    • /
    • v.28 no.1
    • /
    • pp.24-34
    • /
    • 2004
  • Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

Convenient Preparation of Ion-Exchange PVdF Membranes by a Radiation-Induced Graft Polymerization for a Battery Separator (배터리 분리막을 위한 이온교환형 PVdF 맴브레인의 방사선 그래프트법에 의한 간편한 제조법)

  • Kim, Sang-Kyum;Ryu, Jung-Ho;Kwen, Hai-Doo;Chang, Choo-Hwan;Cho, Seong-Ho
    • Polymer(Korea)
    • /
    • v.34 no.2
    • /
    • pp.126-132
    • /
    • 2010
  • A cation-exchange nanofiber poly(vinylidene fluoride) (PVdF) membrane was prepared by a radiation-induced graft polymerization (RIGP) of sodium styrene sulfonate (NaSS) in the presence of the polymerizable access agents in methanol solution. The used polymerizable access agents include styrene, acrylic acid, and vinyl pyrrolidone. The anion-exchange nanofiber PVdF membrane was also prepared by RIGP of glycidyl methacrylate (GMA) and its subsequent chemical modification. The successful preparations of cation- and anion-exchange PVdF membranes were confirmed via SEM, XPS and thermal analysis. The content of the grafting yield, ion-exchange group, and water uptake was in the range of 30.0~32.3%, 2.81~3.01 mmol/g and 66.6~147%, respectively. The proton conductivity at 20$^{\circ}C$ was in the range of 0.020~0.053 S/cm. From the result, the prepared ionexchange PVdF membrane can be used as a separator in battery cells.