DOI QR코드

DOI QR Code

Development of Polyvinyl Alcohol (PVA) Non-woven Separator Coated with ZrO2 Ceramic Nanoparticles for Improving Electrochemical Performance and Thermal Property of Lithium Ion Batteries

열 특성 및 전기화학 특성이 향상된 리튬이차전지용 ZrO2 코팅 PVA (Polyvinyl Alcohol) 복합 부직포 분리막 개발

  • Kim, Ki Jae (Graduate School of Energy and Environment Seoul National University of Science and Technology)
  • 김기재 (서울과학기술대학교 에너지환경대학원 신에너지공학과)
  • Received : 2017.05.13
  • Accepted : 2017.08.10
  • Published : 2017.08.31

Abstract

We develop a ceramic composite separator prepared by coating $ZrO_2$ nanoparticles with a poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) copolymer on a polyvinyl alcohol (PVA) mechanical support prepared by electrospinning technique to improve thermal properties. The gurley number of the ceramic composite separator shows much lower value than that of a PE separator even though it possesses the polymeric coating layer with ceramic nanoparticles. In addition, the proposed sample shows higher electrolyte uptake than PE separator, leading to enhancing the ionic conductivity of the proposed sample and, by extension, the rate discharge properties of lithium ion batteries. Thermal stability of the ceramic composite separator is dramatically improved without any degradation in electrochemical performance compared to the performance of conventional PE separators.

본 연구에서는 리튬이차전지용 분리막으로 사용되고 있는 폴리올레핀 계열 분리막의 취약한 열 안정성을 극복하기 위해 부직포 기반의 세라믹 코팅 복합 분리막을 개발하였다. 개발된 복합 분리막은 지르코늄 다이옥사이드 ($ZrO_2$) 나노 입자와 PVDF-HFP (Polyvinylidine fluoride-hexafluoropropylene) 바인더로 구성된 세라믹 코팅층을 전기 방사로 제조된 폴리비닐알코올 (PVA) 지지체 양면에 코팅하여 제조하였다. 개발 복합 부직포 분리막의 통기도 및 전해액 함침성을 측정한 결과 상용 PE 분리막 대비 매우 낮은 Gurley값과 우수한 전해액 함침 특성을 나타냈으며 이로 인해 이온 전도성이 상용 PE 분리막 대비 크게 향상됨을 확인하였다. 또한 개발 복합 부직포 분리막의 전기화학적 특성 평가를 위해 코인셀을 제조하였고 고율 방전 실험을 수행한 결과 상용 PE 분리막 대비 고율방전 특성이 크게 향상됨이 관찰되었다. 마지막으로 개발 복합 부직포 분리막의 열적 안정성을 평가하기 위해 열 수축율 실험을 수행하였으며 그 결과 개발 복합 부직포 분리막의 열수축율이 상용 PE 분리막 대비 크게 개선되는 것을 관찰하였다.

Keywords

References

  1. P. Arora and Z. Zhang, 'Battery Separators' Chem. Rev., 104, 4419, (2004). https://doi.org/10.1021/cr020738u
  2. H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, 'A review of recent developments in membrane separators for rechargeable lithium-ion batteries' Energy Environ. Sci., 7, 3857 (2014). https://doi.org/10.1039/C4EE01432D
  3. S. S. Zhang, 'A review on the separators of liquid electrolyte Li-ion batteries' J. Power Sources, 164, 351 (2007). https://doi.org/10.1016/j.jpowsour.2006.10.065
  4. P. Kritzer, 'Nonwoven support material for improved separators in Li-polymer batteries' J. Power Sources, 161, 1335 (2006). https://doi.org/10.1016/j.jpowsour.2006.04.142
  5. Y. K. Kim, W. -Y. Lee. K. J. Kim, J. -S. Yu, Y. -J. Kim, 'Shutdown-functionalized nonwoven separator with improved thermal and electrochemical properties for lithium-ion batteries' J. Power Sources, 305, 225 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.106
  6. X. Zhang, L. Ji, O. Toprakci, Y. Liang, M. Alcoutlabi, 'Electrospun Nanofiber-Based Anodes, Cathodes, and Separators for Advanced Lithium-Ion Batteries' Polym. Rev., 51, 239 (2011). https://doi.org/10.1080/15583724.2011.593390
  7. T. H. Cho, T. Sakai, S. Tanase, K. Kimura, Y. Kondo, T. Tarao, M. Tanaka, 'Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery' ECS Solid-State Lett., 10, A159 (2007). https://doi.org/10.1149/1.2730727
  8. J.-R. Lee, J. -H Won, S. -Y. Lee, 'SiO2/Styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries' J. Electrochem. Sci. Tech., 2, 51 (2011). https://doi.org/10.5229/JECST.2011.2.1.051
  9. T.-H. Cho, M. Tanaka, H. Onishi, Y. Kondo, T. Nakamura, H. Yamazaki, S. Tanase, T. Sakai, 'Silica-Composite Nonwoven Separators for Lithium-Ion Battery: Development and Characterization' J. Electrochem. Soc., 155, A699 (2008). https://doi.org/10.1149/1.2956965
  10. S.-S. Choi, Y.S. Lee, C.W. Joo, S.G. Lee, J.K. Park, K.- S. Han, 'Electrospun PVDF nanofiber web as polymer electrolyte or separator' Electrochim. Acta, 50, 339 (2004). https://doi.org/10.1016/j.electacta.2004.03.057
  11. Y.M. Lee, J.-W. Kim, N.-S. Choi, J.A. Lee, W.-H. Seol, J.-K. Park, 'Novel porous separator based on PVdF and PE non-woven matrix for rechargeable lithium batteries' J. Power Sources, 139, 235 (2005). https://doi.org/10.1016/j.jpowsour.2004.06.055
  12. C. Zhang, X. Yuan, L. Wu, Y. Han and J. Sheng, 'Study on morphology of electrospun poly(vinyl alcohol) mats' Eur. Polym. J., 41, 423 (2005). https://doi.org/10.1016/j.eurpolymj.2004.10.027
  13. K. J. Kim, J. -H. Kim, M. -S. Park, H. K. Kwon, H. Kim, Y. -J. Kim, 'Enhancement of electrochemical and thermal properties of polyethylene separators coated with polyvinylidene fluoride-hexafluoropropylene co-polymer for Li-ion batteries' J. Power Sources, 198, 298 (2012). https://doi.org/10.1016/j.jpowsour.2011.09.086
  14. K. J. Kim, H. K. Kwon, M. -S. Park, T. Yim, J. -S. Yu, Y. -J. Kim, 'Ceramic composite separators coated with moisturized ZrO2 nanoparticles for improvingthe electrochemical performance and thermal stability of lithium ion batteries' Phys. Chem. Chem. Phys., 16, 9337 https://doi.org/10.1039/C4CP00624K