Non-Fickian Diffusion of Organic Solvents in Fluoropolymeys

불소고분자내 유기용매의 비-픽 확산

  • 이상화 (경원대학교 화학생명공학과)
  • Published : 2004.01.01

Abstract

Transient sorption experiments were conducted among several combinations of fluoropolymers and various organic solvents. Fully fluorinated polymer tended to exhibit ideal sorption behavior, while partially fluorinated polymers showed anomalous sorption behaviors with a drastic acceleration at the final stage of uptake. Minimization of least-squares of the measured and predicted fractional uptake, which indicated the increasing degree of deviation from Fickian diffusion, gave values of 3.0${\times}$10$\^$-4/, 1.75${\times}$10$\^$-3/, 8.68${\times}$10/sup-3/, 1.75${\times}$10$\^$-2/, respectively, for perfluoroalkoxy copolymer, poly(ethylene-co-tetrafluoroethylene), poly(vinylidene fluoride), poly(ethylene-co-chlorotrifluoroethylene). From stress-strain tests, it was confirmed that non-Fickian diffusion is closely related to the significant variation of mechanical properties (such as modulus and tensile strength) of swollen polymer. Anomalous sorption behavior stemmed from non-Fickian diffusion caused by nonlinear disruption of polar inter-segmental bonds due to solvent-induced plasticization. Thus, it is imperative to investigate the diffusion behavior of swelling solvents in partially fluorinated polymers, especially for the application to barrier materials or perm-selective membranes.

여러 종류의 불소고분자내로 다양한 유기용매들의 동적 흡수 평형 (혹은 팽윤) 실험을 진행하였다. 불소로 포화된 고분자는 이상적 흡수 거동을 나타내었으나 부분적으로 치환된 불소고분자는 최종 흡수단계에서 가속화되는 비이상적 흡수 거동을 나타내었다. 회귀분석에 의해 픽-확산 거동으로부터 벗어나는 정도를 최소자승법 (즉, ∑ [측정값-예측값]$^2$)으로 구한 결과 -퍼플루오로알콕시 공중합체, 폴리(에틸렌 테트라플루오로에틸렌) 공중합체, 폴리(비닐리덴 플루오라이드), 폴리(에틸렌 클로로트리플루오로에틸렌) 공중합체에 대해 각각 3.0${\times}$$10^{-4}$, 1.75${\times}$$10^{-3}$, 8.68${\times}$$10^{-3}$, 1.75${\times}$$10^{-2}$의 수치를 나타내었다. 응력-변형 실험 결과 비-픽 확산 거동은 팽윤된 불소고분자의 기계적 성질 (탄성률과 인장 강도) 변화와 상관관계가 있음을 알 수 있었다. 비이상적 흡수 거동의 주요 원인은 치환된 수소 혹은 염소와 불소원자 간의 전기음성도 차이에 기인한 사슬 간극성 결합 구조가 침투성분의 가소화 효과에 의해 비선형적 이완이 진행되면서 비-픽 확산이 진행되기 때문이다. 따라서 부분적으로 치환된 불소고분자를 차단성 혹은 선택적 투과기능이 요구되는 분야에 적용할 때 가소화 성분에 대한 용해 및 확산 거동에 대한 신중한 고찰이 필요하다.

Keywords

References

  1. Polymer Permeability C.E.Rogers
  2. ACS Symposium Series 613 Biosensor and Chemical Sensor Technology K.R.Rogers;A.Mulchandani;W.Zhou
  3. Diffusion in and through Polymers R.W.Vieth
  4. Polymer Science and Technology v.13 J.U.Woon;J.P.Jeon;B.J.Lee
  5. Fluoropolymers : Synthesis and Application A.E.Hougham;P.E.Cassidy;J.Davidson
  6. Fluoropolymers L.A.Wall
  7. Modern Fluoropolymers J.Scheirs
  8. Polymers of Gas Separation N.Toshima
  9. The Mathematics of Diffusion J.Crank
  10. Polymer v.18 K.J.Shon;H.J.Kang
  11. J. Chem. Phys. v.31 M.H.Cohen;D.Turnbull https://doi.org/10.1063/1.1730566
  12. Fortschr. Hochpolym. Forch v.3 H.Fujita https://doi.org/10.1007/BFb0050514
  13. J. Appl. Polym. Sci. v.22 J.S.Vrentas;J.L.Duda https://doi.org/10.1002/app.1978.070220823
  14. Polymer v.14 Y.S.Kang https://doi.org/10.1016/0032-3861(73)90081-5
  15. Polymer v.18 S.Kaang;C.Hong;D.Kweon
  16. Polymer v.24 K.S.Park;D.J.Kim
  17. Diffusion in Polymer J.Crank;G.S.Park
  18. Membrane Journal v.10 S.W.Lee
  19. Bull. Chem. Soc. Japan v.39 H.Odani;S.Kida;M.Tamura https://doi.org/10.1246/bcsj.39.2378
  20. Polymer v.19 A.R.Berens;H.B.Hopfenberg https://doi.org/10.1016/0032-3861(78)90269-0
  21. Trans. Faraday Soc. v.48 G.S.Park https://doi.org/10.1039/tf9524800011
  22. J. Am. Chem. Soc. v.75 F.A.Long;R.J.Kokes https://doi.org/10.1021/ja01105a062
  23. J. Am. Chem. Soc. v.82 F.A.Long;D.Richman https://doi.org/10.1021/ja01488a002
  24. J. Am. Chem. Soc. v.77 E.Bagley;F.A.Long https://doi.org/10.1021/ja01613a038
  25. J. Polym. Sci. C v.12 T.Alfrey;E.F.Gurnee;W.G.Lloyd
  26. Polymer v.23 H.L.Thomas;A.H.Windle https://doi.org/10.1016/0032-3861(82)90093-3
  27. Polymer v.18 N.Thomas;A.H.Windle https://doi.org/10.1016/0032-3861(77)90122-7
  28. A Permeability of Plastic Films and Coatings Super Case Ⅱ Transport of Organic Vapors in Glassy Polymers C.H.M.Jacques;H.B.Hopfenberg;V.T.Stannet;H.B.Hopfenberg(Editions)
  29. Chem. Eng. Comm. v.21 C.Gostoli;G.C.Sarti https://doi.org/10.1080/00986448308940277
  30. Textile Res. J. v.30 no.443 I.C.Watt https://doi.org/10.1177/004051756003000902
  31. Polymer v.16 N.Verbergh;H.Berghmans;G.Smets https://doi.org/10.1016/0032-3861(75)90183-4
  32. Modern Fluoropolymers J.Scheirs
  33. Fortschr. Hochpolym. Forch v.Bd.2 C.A.Sperati;H.W.Starkweather
  34. J. Polym. Sci. Polym. Phys. Ed. v.11 F.C.Wilson;H.W.Starkweather
  35. Polymer v.42 B.E.Mohajir;N.Heymans https://doi.org/10.1016/S0032-3861(01)00064-7
  36. J. Polym. Sci. A-2 v.10 J.P.Sibilia https://doi.org/10.1002/pol.1972.160100311
  37. Ing. Eng. Chem. Prod. Develop. v.8 C.M.Hansen
  38. J. Point Technol. v.38 J.I.Gordon
  39. Mechanism of Deformation in Polymeric Solids Polymeric Materials A.Peterlin
  40. Polym. Eng. Sci. v.29 G.Mensitieri;M.A.Delnobile;A.Apicella;L.Nicolais https://doi.org/10.1002/pen.760292408
  41. Polymer v.14 J.W.Baek;E.M.Shin;Y.M.Lee https://doi.org/10.1016/0032-3861(73)90088-8
  42. Chemical Engineering Progress J.F.Imbalzano
  43. Polymer v.38 S.Radice;N.D.Fanti;G.Zerbi https://doi.org/10.1016/S0032-3861(97)85611-X
  44. J. Appl. Polym. Sci. v.1 M.I.Bro https://doi.org/10.1002/app.1959.070010307