• Title/Summary/Keyword: Fluoride glass

Search Result 96, Processing Time 0.031 seconds

IN VITRO STUDY ON THE FLUORIDE RELEASE FROM GLASS IONOMER CEMENTS AND A FLUORIDE-CONTAINING RESIN (글라스 아이오노머 시멘트와 불소함유 레진의 불소유리에 관한 연구)

  • Kim, Mi-Kyung;Lee, Ki-Soo
    • The korean journal of orthodontics
    • /
    • v.28 no.3 s.68
    • /
    • pp.399-407
    • /
    • 1998
  • In order to resolve enamel demineralization around orthodontic bracket, fluoride-releasing materials, glass ionomer cements and fluoride-containing resin, were introduced in orthodontic department. There were many studies about their fluoride release, but their results were controversial. The purpose of this study was to clarify the pattern and amounts of fluoride release from glass ionomer cements and a fluoride-containing resin during 70 days in vitro. Disc shaped specimens were prepared and immersed in polyethylene tube containing 2ml distilled deionized water. The daily amounts of the fluoride released from each specimens were measured after experiment 1 day, 3 days, 7 days, 14 days, 42 days and 70 days. They were measured by fluoride-specific electrode combined pH/Ion meter. The following results were as follow, 1. Fluorides released from fluoride-containing resin during 1 day were significantly less than those from glass ionomer cements. 2. On experiment 70 days, mean daily amounts of fluoride released from Miracle-$Mix^{\circledR}$were $3.4{\mu}g/cm^2$, those from Fuji GC $II^{\circledR}$ were $2.7{\mu}g/cm^2$, those from $Orthobond^{\circledR}$ were $2.3{\mu}g/cm^2$, those from Fuji GC $LC^{\circledR}$were $1.4{\mu}g/cm^2$ and those from fluoride-containing resin, $Heliomolar^{\circledR}$, were $0.1{\mu}g/cm^2$. 3. There were no significant differences in daily amounts of fluoride released from between self-curing glass ionomer cements and light-curing glass ionomer cements. Amounts of released fluoride varied among commercially available products. 4. In all experimental materials, amounts of released fluoride decreased rapidly until experimental 3 days and then decreased slowly until 14 days and more slowly until 70 days.

  • PDF

Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

  • Cabral, Maria Fernanda Costa;Martinho, Roberto Luiz de Menezes;Guedes-Neto, Manoel Valcacio;Rebelo, Maria Augusta Bessa;Pontes, Danielson Guedes;Cohen-Carneiro, Flavia
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.209-215
    • /
    • 2015
  • Objectives: The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods: The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinamica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinamica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results: The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions: There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs.

Characteristics of fluoride/glass as a seed layer for microcrystalline silicon film growth

  • Choi, Seok-Won;Kim, Do-Young;Ahn, Byeong-Jae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.65-66
    • /
    • 2000
  • Various fluoride films on a glass substrate were prepared and characterized to provide a seed layer for crystalline Si film growth. The XRD analysis on $CaF_2/glass$ illustrated (220) preferential orientation and showed lattice mismatch less than 5 % with Si. We achieved a fluoride film with breakdown electric field of 1.27 MV/cm, leakage current density about $10^{-6}$ $A/cm^2$, and relative dielectric constant less than 5.6. This paper demonstrates microcrystalline silicon $({\mu}c-Si)$ film growth by using a $CaF_2/glass$ substrate. The ${\mu}c-Si$ films exhibited crystallization in (111) and (220) planes, grain size of $700\;{\AA}$, crystalline volume fraction over 65 %, dark- and photo-conductivity ratio of 124, activation energy of 0.49 eV, and dark conductivity less than $4{\times}10^{-7}$ S/cm.

  • PDF

THE EFFECT OF pH MEDIA ON THE FLUORIAE RELEASE AND SOLUBILITY OF GLASS IONOMER CEMENT (pH가 glass ionomer cement의 불소이온 용출량과 용해성에 미치는 영향에 관한 실험적 연구)

  • Lee, Gwang-Hee;Choi, Ho-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.1
    • /
    • pp.88-96
    • /
    • 1990
  • The purpose of this study was to investigate the fluoride release and solubility of glass ionomer cement associated with three pH media. For this study, GC Fuji II discs (20.0mm in diameter ${\times}$ 1.5mm thick) were immersed in pH 4.0 lactic acid, pH 7.0 distilled water and pH 10.0 KOH solutions for 1, 7, 14 and 28 days. The amount of fluoride release from the cement into three pH media were measured by fluoride specific ion electrode and the solubility was measured by weight loss of discs. The results were as follows: 1. The lower was the pH of media, the more was the amount of release of fluoride. 2. The amount of fluoride release was increased with time lapse. 3. After I day, the solubility was the highest, and after 7 days that was the least. 4. The lower was the pH of media, the more was the solubility, but there was no statistical difference in solubility according to the pH change.

  • PDF

THE EFFECT OF TOPICAL FLUORIDES ON SURFACE STRUCTURES OF VARIOUS ESTHETIC RESTORATIVE MATERIALS (불소 제재가 심미 수복 재료의 표면 구조에 미치는 영향)

  • Kim, Un-Yong;Choi, Byung-Jai
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.24 no.2
    • /
    • pp.436-448
    • /
    • 1997
  • Topical fluoride application for children is a widely performed procedure in the field of Pediatric Dentistry for its dental caries prevention effects. However, it is recently recognized as having some unwanted effects on several esthetic restorative materials as it roughens the surfaces of the restorative materials. In order to evaluate the surface changes in esthetic restorative materials, the author immersed composite resin, glass ionomer cement, and resin-modified glass ionomer cement specimens in various topical fluoride agents and measured the weight loss and also, examined the specimens under the scanning electron microscope. The followings are the results : 1. All the specimens immersed in APF gel for 4 minutes showed statistically significant weight loss. (paired t-test, P<0.05). 2. There was no statistically significant weight loss for the resin-modified glass ionomer cement and composite resin groups immersed in sodium fluoride solution (paired t-test, P>0.05). 3. When the glass ionomer cement group was immersed in APF gel for 1 and 4 minutes, there was a statistically significant weight loss compare to other esthetic restorative materials (ANOVA, P<0.05). 4. In the resin-modified glass ionomer cement group and the composite resin group, weight loss in the APF gel 4 minutes immersion group was greater than the 1 minute immersion group, and it was statistically significant (ANOVA, P<0.05). 5. When the specimens were examined under scanning electron microscope, the surface changes were greatest in the order of glass ionomer cement, resin-modified glass ionomer cement, composite resin and also in the order of APF gel 4 minute immersion group, 1 minute immersion group, sodium fluoride immersion group, and control group.

  • PDF

Physicochyemical Properties of $ZrF_4-Based$ Fluoride Glasses Containing Rare-Earth Ions

  • Ishioka, Noriyuki;Ogawa, Kouji;Arakawa, Tsuyoshi
    • The Korean Journal of Ceramics
    • /
    • v.5 no.4
    • /
    • pp.375-378
    • /
    • 1999
  • In tho XRD study of $56ZrF_4 \cdot34BaF_2 \cdot4AIF_3 \cdot(6-x)LaF_3 \cdotxLnF_3$ glassdLn=Ce, Nd, Gd, Th), halo pattern charactarktic fo an amorphous sample appeared. When the halo peak angle ($\theta_p$) was converted into a wavenumber with $Qp=4\pi sinG\pi/\lambda(\lambda$ is the wavolongth of the radialion used), it was found that the Qp values varied almost liuearly with the concentration 01 $LnF_3$. The emissiou spect1.a of $Ce^{3-}$-containing fluoride glasses nnder 273 nm excitation had a peak maximum at ea. 300 nm $(Ce^{3+}$ 5d-4f- transition). The maximal intensity of the fluorescence was observed when the $CeF_3$, content was extremely low (ca. 1 mol%j. DTA measurement revealed tbat these fluoride glasses had two crystallization temperatures. In $56ZrF_4. 34BaF_2. 4NF_3. (6-x)LaF_3 .xNdF_3$ glasses, the actmation energies of crystallization obtained from a Kssinger plot were 1.7 and 5.0 eV for the glass with x=2, and 1.9 and 5.6 eV for the glass with x=4.

  • PDF

Microcrystalline Silicon Film Growth on a Fluoride Film Coated Glass Substrate

  • Kim, Do-Young;Park, Joong-Hyun;Ahn, Byung-Jae;Yoo, Jin-Su;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.526-529
    • /
    • 2002
  • Various fluoride films on a glass substrate were prepared and characterized in order to determine the best seed layer for a microcrystalline silicon (${\mu}c$-Si) film growth. Among the various group-IIA-fluoride systems, the $CaF_2$films on glass substrates illustrated (220) preferential orientation and a lattice mismatch of less than 0.7% with Si. $CaF_2$ films exhibited a dielectric constant between $4.1{\sim}5.2$ and an interface trap density ($D_{it}$ as low as $1.8{\times}10^{11}\;cm^{-2}eV^1$. Using the $CaF_2$/glass structure, we were able to achieve an improved ${\mu}c$-Si film at a process temperature of 300 $^{\circ}C$. We have achieved the ${\mu}c$-Si films with a crystalline volume fraction of 65%, a grain size of 700 ${\AA}$, and an activation energy of 0.49 eV.

  • PDF

Effect of Fluoride Recharging on Fluoride Release and Surface Properties of Orthodontic Bracket Adhesives (불소 적용 후 교정용 브라켓 접착제 종류에 따른 불소 재흡수성과 표면 변화에 관한 연구)

  • Byeon, Seon Mi
    • Journal of dental hygiene science
    • /
    • v.18 no.4
    • /
    • pp.218-226
    • /
    • 2018
  • The aim of this study was to compare fluoride release and surface changes according to different orthodontic bracket adhesives the application of fluoride products. We used non-fluoridated composite resin Transbond fluoridated composite resins Blugloo and LightBond, resin-modified glass ionomer Rely $X^{TM}$ Luting 2, and conventional glass ionomer Fuji $I^{(R)}$. Fluoride release of five orthodontic bracket adhesives and fluoride release ability after application of three fluoride products (1.23% acidulated phosphate fluoride gel, Tooth Mousse $Plus^{(R)}$, Fluor Protector, and a toothbrush with sodium fluoride-containing toothpaste) were measured using a fluoride electrode that was connected to an ion analyzer. After 4 weeks of fluoride application, the surface roughness and surface morphology were examined using a surface roughness tester and field emission scanning electron microscopy. The amounts of fluoride release were observed not only on application of Tooth Mousse $Plus^{(R)}$ and Fluor Protector on resin-modified glass ionomer Rely $X^{TM}$ Luting 2 and Fuji $I^{(R)}$, but also during tooth brushing using fluoride-containing toothpaste. After application of Tooth Mousse $Plus^{(R)}$, except Transbond XT, the surface roughness increased, and all orthodontic adhesives showed a partial drop of micro-particle filler. On application of 1.23% acidulated phosphate fluoride gel on all orthodontic bracket adhesives, their surface roughness increased. To bond the orthodontic bracket, resin-modified glass ionomer Rely $X^{TM}$ Luting 2 and Fuji $I^{(R)}$ adhesives are highly recommended if the amount of fluoride release is considered to confer a preventative effect on dental caries, and among the fluoride products, Tooth Mousse $Plus^{(R)}$ and Fluor Protector are better than 1.23% acidulated phosphate fluoride gel, and these are expected to prevent dental caries even during tooth brushing with fluoride-containing toothpaste.

Effect of casein phosphopeptide-amorphous calcium phosphate on fluoride release and micro-shear bond strength of resin-modified glass ionomer cement in caries-affected dentin

  • Agob, Jamila Nuwayji;Aref, Neven Saad;Al-Wakeel, Essam El Saeid
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.4
    • /
    • pp.45.1-45.11
    • /
    • 2018
  • Objectives: This study was conducted to evaluate fluoride release and the micro-shear bond strength of resin-modified glass ionomer cement (RMGIC) in casein phosphopeptide-amorphous calcium phosphate (CPP-ACP)-remineralized caries-affected dentin (CAD). Materials and Methods: Exposed dentin surfaces of 30 human third molar teeth were divided into 2 equal groups for evaluating fluoride release and the micro-shear bond strength of RMGIC to CAD. Each group was subdivided into 3 equal subgroups: 1) control (sound dentin); 2) artificially demineralized dentin (CAD); 3) CPP-ACP remineralized dentin (remineralized CAD). To measure fluoride release, 15 disc-shaped specimens of RMGIC (4 mm in diameter and 2 mm in thickness) were bonded on one flat surface of the dentin discs of each group. Fluoride release was tested using ion chromatography at different intervals; 24 hours, 3, 5, 7 days. RMGIC micro-cylinders were built on the flat dentin surface of the 15 discs, which were prepared according to the assigned group. Micro-shear bond strength was measured after 24 hours water storage. Data were analyzed using 1- and 2-way analysis of variance and the post hoc least significant difference test (${\alpha}=0.05$). Results: Fluoride detected in solutions (at all intervals) and the micro-shear bond strength of RMGIC bonded to CPP-ACP-remineralized dentin were significantly higher than those bonded to artificial CAD (p < 0.05). Conclusions: Demineralized CAD consumes more fluoride released from RMGIC into the solution for remineralization than CPP-ACP mineralized dentin does. CPP-ACP increases the micro-shear bond strength of RMGIC to CAD.

Hydroxyapatite Formation on Fluoride Bioactive Glasses coated on Alumina (알루미나에 코팅된 불화물 생체유리에의 수산화 아파타이트 형성)

  • 안현수;이은성;김철영
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1087-1093
    • /
    • 1999
  • Bioglass which is one of the surface active bionmaterials has a good biocompatibility but a poor mechanical strength, In the present work therefore two types of fluoride-containing bioglasses were coated on an alumina to improve mechanical strength. Crystallization of the coating layer and the hydroxyapatite formation on the bioactive glass coatings in tris-buffer solution were studied. When bioactive glass coated alumina was heat-treated Na2CaSi3O8 crystal was formed on the layer at lower temperature while wollastonite(CaSIO3) was obtained at higher temperature. Hydroxyapatite forming rate on the coating layer with Na2CaSi3O8 crystal was delayed with SiO2 contents in glass composition. However the hydroxyapatite was developed in 20minutes regardless SiO2 contents when the coating layer crystallized into wollastonite. More amount of P3+ ions were leached out of the coating layer with wollastonite than that with Na2CaSi3O8 crystal while Na+ and Ca2+ ions were leached out more easily from the Na2CaSi3O8 crystal containing coating layer.

  • PDF