• 제목/요약/키워드: Fluorescent microscopy

검색결과 168건 처리시간 0.02초

Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature

  • Barry G. H. Janssen;Mohamadreza Najiminaini;Yan Min Zhang;Parsa Omidi;Jeffrey J. L. Carson
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.12.1-12.12
    • /
    • 2021
  • Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.

형광항체법(螢光抗體法)을 이용(利用)한 실험적(實驗的) 감염(感染) 마우스에서의 Leptospira균(菌)의 검출(檢出) (Detection of Leptospires in Experimentally Infected Mice, Using Fluorescent Antibody Technique)

  • 석호봉;서익수
    • 대한수의학회지
    • /
    • 제13권1호
    • /
    • pp.39-46
    • /
    • 1973
  • Cultural method, dark field microscopy & fluorescent antibody technique were compared for their sensitivity of the detection of leptospires from experimentally infected mice. Two groups of mice were infected with L. icterohemorrhagiae (M20) and L. australis (Ballico), and the infected blood, urine and a number of organs were subjected to the bacterial isolation. The results obtained were summarized as follows: 1. L. icterohemorrhagiae (M20) and L. australis (Ballico) in blood, urine and various tissues of experimentally infected mice were detected with a negrigible non specificity, by the fluorescent antibody technique. 2. The fluorescent antibody technique, as applied to detection of leptospires in blood, urine and various infected tissue, proved to be better than cultural method and dark-field microscopy. 3. Early detection of leptospires by fluorescent antibody technique were possible in blood at 2 days after inoculation, whereas detection of organisms in liver, spleen, lung and kidney were observed later. By means of fluorescent antibody technique, the detection of leptospires in kidney and urine was possible up to 34 days postinoculation, whereas those in other parts were impossible. 4. Fluorescent antibody reaction of leptospires were highly specific to homologous antigen rather than to heterologous one. 5. Fluorescent antibody technique may be of value in the application for the demonstration of leptospira from clinical specimens.

  • PDF

Association of Aster Yellow Phytoplasma with Witches' Broom Disease of Ash (Fraxinus rhynchophylla Hence) in Korea

  • Han, Sang Sub
    • 한국산림과학회지
    • /
    • 제94권2호통권159호
    • /
    • pp.103-107
    • /
    • 2005
  • Typical phytoplasma whiches' broom symptoms were observed in Ash (Fraxinus rhynchophylla Hence) in Korea. The symptoms of the disease were showing abnormally small leaves, shorted internodes and proliferation of shoots. Examination of fluorescent and electron microscopy of leaf midribs revealed numerous phytoplasma bodies localized in the phloem tube cells. The phytoplasmas were detected in all the symptomatic samples by the amplification with phytoplasma specific primer pair P1/P7 consistently, and the expected size was 1.8 kb. However, the phytoplasma DNA was not detected in healthy seedlings. Based on sequence analysis of amplified region, this phytoplasma has close homologies with eqilodium phyllody, mulberry dwarf, and aster yellow phytoplasmas, 99.95%, 99.79% and 99.78%, respectively, This phylogetic analysis indicates that ash witches' broom phytoplasma should be classified in the aster yellow group 16SrVI and clearly distinct from the ash yellow group 16SrVII.

Optical Tracking of Three-Dimensional Brownian Motion of Nanoparticles

  • Choi C. K.;Kihm K.D.
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.3-19
    • /
    • 2005
  • Novel optical techniques are presented for three-dimensional tracking of nanoparticles; Optical Serial Sectioning Microscopy (OSSM) and Ratiometric Total Internal Reflection Fluorescent Microscopy (R-TIRFM). OSSM measures optically diffracted particle images, the so-called Point Spread Function (PSF), and dotermines the defocusing or line-of-sight location of the imaged particle measured from the focal plane. The line-of-sight Brownian motion detection using the OSSM technique is proposed in lieu of the more cumbersome two-dimensional Brownian motion tracking on the imaging plane as a potentially more effective tool to nonintrusively map the temperature fields for nanoparticle suspension fluids. On the other hand, R-TIRFM is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth of an argon-ion laser is used to provide a thin illumination field of an order of a few hundred nanometers from the wall. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.

  • PDF

Super-continuum generation 현상을 이용한 Solid-immersion lens 기반 공초점 현미경 (Solid-immersion lens based confocal microscopy using super-continuum generation effect)

  • 이원섭;문형배;임건;최국종;박노철
    • 정보저장시스템학회논문집
    • /
    • 제11권2호
    • /
    • pp.22-25
    • /
    • 2015
  • In this paper, we demonstrate solid-immersion lens based confocal microscopy using super-continuum generation effect. Using super-continuum generation effect, we could diversify the excitation wavelength of confocal microscopy. Further, high refractive index of solid-immersion lens would increase the resolution of confocal microscopy. As a result, by applying the super-continuum generation effect and solid-immersion lens to confocal microscopy, some problems of confocal fluorescent microscopy, the excitation wavelength and the resolution, could be overcome. To verify it, we made home-built solid-immersion lens based confocal microscopy using super-continuum generation effect, and evaluate the performance of the system.

Synthesis of NBD-Labeled DOTAP Analog to Track Intracellular Delivery of Liposome

  • Doh, Kyung-Oh;Kim, Bieong-Kil;Lee, Tae-Jin;Park, Jong-Won;Seu, Young-Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권1호
    • /
    • pp.131-135
    • /
    • 2013
  • A DOTAP analog labeled by NBD on the head group (DTNBD) was designed and synthesized to label DOTAP liposome. The structure was confirmed by $^1H$ NMR and FAB-MS, and the fluorescence of the newly synthesized DT-NBD was observed by fluorescent microscopy. The transfection efficiency of DOTAP liposome containing DT-NBD was comparable to commonly used NBD PE in COS7 and MCF7 cells. Furthermore, the level of cellular uptake and fluorescent intensity of fluorescent liposome containing DT-NBD was higher than NBD PE. Therefore, the novel NBD-labeled DOTAP analog seems to be effectively used for investigation of the cellular interaction and transfection mechanism of DOTAP liposome.

Detection of Near-membrane Calcium Ions in Live Tissues with a Two-Photon Fluorescent Probe

  • Shin, Yu-Na;Lim, Chang-Su;Tian, Yu Shun;Rho, Won-Young;Cho, Bong-Rae
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권3호
    • /
    • pp.599-605
    • /
    • 2010
  • A two-photon fluorescent probe (ACaCL) that can detect near-membrane $Ca^{2+}$ is reported. This probe can be excited by 780 nm fs pulses, shows high photostability and negligible toxicity, and can visualize near-membrane $Ca^{2+}$ in live cells and deep inside live tissues by two-photon microscopy.

High-speed Two-photon Laser Scanning Microscopy Imaging of in vivo Blood Cells in Rapid Circulation at Velocities of Up to 1.2 Millimeters per Second

  • Boutilier, Richard M.;Park, Jae Sung;Lee, Ho
    • Current Optics and Photonics
    • /
    • 제2권6호
    • /
    • pp.595-605
    • /
    • 2018
  • The two-photon process of microscopy provides good spatial resolution and optical sectioning ability when observing quasi-static endogenous fluorescent tissue within an in vivo animal model skin. In order to extend the use of such systems, we developed a two-photon laser scanning microscopy system capable of also capturing $512{\times}512$ pixel images at 90 frames per second. This was made possible by incorporating a 72 facet polygon mirror which was mounted on a 55 kRPM motor to enhance the fast-scan axis speed in the horizontal direction. Using the enhanced temporal resolution of our high-speed two-photon laser scanning microscope, we show that rapid processes, such as fluorescently labeled erythrocytes moving in mouse blood flow at up to 1.2 mm/s, can be achieved.

Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging

  • Park, Sangjun;Min, Cheol Hong;Han, Seokyoung;Choi, Eunjin;Cho, Kyung-Ok;Jang, Hyun-Jong;Kim, Moonseok
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.550-564
    • /
    • 2022
  • Optical microscopy is a useful tool for study in the biological sciences. With an optical microscope, we can observe the micro world of life such as tissues, cells, and proteins. A fluorescent dye or a fluorescent protein provides an opportunity to mark a specific target in the crowd of biological samples, so that an image of a specific target can be observed by an optical microscope. The optical microscope, however, is constrained in resolution due to diffraction limit. Super-resolution microscopy made a breakthrough with this diffraction limit. Using a super-resolution microscope, many biomolecules are observed beyond the diffraction limit in cells. In the case of volumetric imaging, the super-resolution techniques are only applied to a limited area due to long imaging time, multiple scattering of photons, and sample-induced aberration in deep tissue. In this article, we review recent advances in super-resolution microscopy for volumetric imaging. The super-resolution techniques have been integrated with various modalities, such as a line-scan confocal microscope, a spinning disk confocal microscope, a light sheet microscope, and point spread function engineering. Super-resolution microscopy combined with adaptive optics by compensating for wave distortions is a promising method for deep tissue imaging and biomedical applications.