DOI QR코드

DOI QR Code

Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature

  • Barry G. H. Janssen (Department of Medical Biophysics, Western University) ;
  • Mohamadreza Najiminaini (Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute) ;
  • Yan Min Zhang (Kidney Clinical Research Unit (KCRU), London Health Sciences Centre) ;
  • Parsa Omidi (Imaging Program, St.Joseph's Health Care, Lawson Health Research Institute) ;
  • Jeffrey J. L. Carson (Department of Medical Biophysics, Western University)
  • Received : 2021.02.12
  • Accepted : 2021.06.08
  • Published : 2021.12.31

Abstract

Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.

Keywords

Acknowledgement

This work was sponsored by the Western University and the Lawson Health Research Institute.

References

  1. B.K. Al-Khazraji, N.M. Novielli, D. Goldman, P.J. Medeiros, D.N. Jackson, A simple "Streak Length Method" for quantifying and characterizing red blood cell velocity profiles and blood flow in rat skeletal muscle arterioles. Microcirculation 19(4), 327-335 (2012). https://doi.org/10.1111/j.1549-8719.2012.00165.x
  2. R. Alon, S. Feigelson, From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin. Immunol. 14, 93
  3. E. Beerling, I. Oosterom, E. Voest, M. Lolkema, J. van Rheenen, Intravital characterization of tumor cell migration in pancreatic cancer. Intravital 5(3), e1261773 (2016). https://doi.org/10.1080/21659087.2016.1261773
  4. E. Beerling, L. Ritsma, N. Vrisekoop, P.W.B. Derksen, J. van Rheenen, Intravital microscopy: new insights into metastasis of tumors. J. Cell Sci. 124, 299 (2011)
  5. R. Bordy, P. Totoson, C. Prati, C. Marie, D. Wendling, C. Demougeot, Microvascular endothelial dysfunction in rheumatoid arthritis. Nat. Rev. Rheumatol. 14, 404 (2018)
  6. A. Celi, G. Merrill-Skoloff, P. Gross, S. Falati, D.S. Sim, R. Flaumenhaft, B.C. Furie, B. Furie, Thrombus formation: direct real-time observation and digital analysis of Thrombus assembly in a living mouse by confocal and Widefield Intravital microscopy. J. Thromb. Haemost. 1, 60 (2003)
  7. Y.W. Choo, J. Jeong, K. Jung, Recent advances in Intravital microscopy for investigation of dynamic cellular behavior in vivo. BMB Rep. 53, 357 
  8. D. Coling, B. Kachar, Principles and application of fluorescence microscopy. Curr. Protoc. Mol. Biol. Chapter 14, Unit 14.10 (2001)
  9. G. Cox, Biological confocal microscopy. Mater. Today 5, 34 (2002)
  10. D. De Backer, D. Orbegozo Cortes, K. Donadello, J.-L. Vincent, Pathophysiology of microcirculatory dysfunction and the pathogenesis of septic shock. Virulence 5, 73 (2014)
  11. M.L. Ellsworth, R.N. Pittman, C.G. Ellis, Measurement of hemoglobin oxygen saturation in capillaries. Am. J. Phys. 252, H1031 (1987)
  12. B. Furie, B.C. Furie, Thrombus formation in vivo. J. Clin. Invest. 115, 3355 (2005)
  13. F. Helmchen, W. Denk, Deep tissue two-photon microscopy. Nat. Methods 2, 932 (2005)
  14. J. James, H.J. Tanke, Biomedical Light Microscopy (Springer Science & Business Media, Dordrecht, 2012)
  15. G.H. Janssen, G.J. Tangelder, M.G.O. Egbrink, R.S. Reneman, Spontaneous leukocyte rolling in venules in untraumatized skin of conscious and anesthetized animals. Am. J. Physiol. 267, H1199 (1994)
  16. S.A. Japee, R.N. Pittman, C.G. Ellis, Automated method for tracking individual red blood cells within capillaries to compute velocity and oxygen saturation. Microcirculation (New York, N.Y. : 1994) 12, 507 (2005a)
  17. S.A. Japee, R.N. Pittman, C.G. Ellis, A new video image analysis system to study red blood cell dynamics and oxygenation in capillary networks. Microcirculation (New York, N.Y. : 1994) 12, 489 (2005b)
  18. C.N. Jenne, C.H.Y. Wong, B. Petri, P. Kubes, The use of spinning-disk confocal microscopy for the Intravital analysis of platelet dynamics in response to systemic and local inflammation. PLoS One 6, e25109 (2011)
  19. H. Jiang, Y. Wei, Y. Shi, C.B. Wright, X. Sun, G. Gregori, F. Zheng, E.A. Vanner, B.L. Lam, T. Rundek, J. Wang, Altered macular microvasculature in mild cognitive impairment and Alzheimer disease. J. Neuro-Ophthalmol. 38, 292 (2018)
  20. A. Karaman Koc, H.E. Kocak, B.C. Erdogan, H.A. Ulusoy, M. Yigitbay, Z.T. Bilece, M.S. Elbistanli, K.H. Kaya, Severe OSAS causes systemic microvascular dysfunction: Clinical evaluation of ninety-eight OSAS patients. Clin Otolaryngol 44(3), 412-415 (2019). https://doi.org/10.1111/coa.13285
  21. A.G. Koutsiaris, A velocity profile equation for blood flow in small arterioles and venules of small mammals in vivo and an evaluation based on literature data. Clin. Hemorheol. Microcirc. 43, 321 (2009)
  22. K. Ley, J. Mestas, M.K. Pospieszalska, P. Sundd, A. Groisman, A. Zarbock, Chapter 11. Intravital microscopic investigation of leukocyte interactions with the blood vessel wall. Methods Enzymol. 445, 255 (2008)
  23. W. Li, R.G. Nava, A.C. Bribriesco, B.H. Zinselmeyer, J.H. Spahn, A.E. Gelman, A.S. Krupnick, M.J. Miller, D. Kreisel, Intravital 2-photon imaging of leukocyte trafficking in beating heart. J. Clin. Invest. 122, 2499 (2012)
  24. H.H. Lipowsky, Microvascular rheology and hemodynamics. Microcirculation 12, 5 (2005)
  25. O. Mahmoud, G. Janssen, M.R. El-Sakka, Machine-learning-based functional microcirculation analysis. AAAI 34, 13326 (2020)
  26. A. Nakano, Spinning-disk confocal microscopy. A cutting-edge tool for imaging of membrane traffic. Cell Struct. Funct. 27, 349 (2002)
  27. M.D. Nelson, J. Wei, C.N. Bairey Merz, Coronary microvascular dysfunction and heart failure with preserved ejection fraction as female-pattern cardiovascular disease: the chicken or the egg? Eur. Heart J. 39, 850 (2018)
  28. M. Nitzan, A. Romem, R. Koppel, Pulse oximetry: fundamentals and technology update. Med. Devices (Auckland, N.Z.) 7, 231 (2014)
  29. M.G.A. Oude Egbrink, G.H.G.W. Janssen, K. Ookawa, D.W. Slaaf, R.S. Reneman, X.H. T. Wehrens, K.J.M. Maaijwee, N. Ohshima, H.A.J. Struijker Boudier, G.J. Tangelder, Especially Polymorphonuclear leukocytes, but also monomorphonuclear leukocytes, roll spontaneously in venules of intact rat skin: involvement of E-selectin. J. Invest. Dermatol. 118, 323 (2002)
  30. S. Pai, K.J. Danne, J. Qin, L.L. Cavanagh, A. Smith, M.J. Hickey, W. Weninger, Visualizing leukocyte trafficking in the living brain with 2-photon intravital microscopy. Front. Cell. Neurosci. 6(67), 1 (2013). https://doi.org/10.3389/fncel.2012.00067
  31. N. Percie du Sert, V. Hurst, A. Ahluwalia, S. Alam, M.T. Avey, M. Baker, W.J. Browne, A. Clark, I.C. Cuthill, U. Dirnagl, M. Emerson, P. Garner, S.T. Holgate, D.W. Howells, N.A. Karp, S.E. Lazic, K. Lidster, C.J. MacCallum, M. Macleod, E.J. Pearl, O.H. Petersen, F. Rawle, P. Reynolds, K. Rooney, E.S. Sena, S.D. Silberberg, T. Steckler, H. Wurbel, The ARRIVE Guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol 18, e3000410 (2020)
  32. V. Pinho, F.M. Coelho, G.B. Menezes, D.C. Cara, Intravital microscopy to study leukocyte recruitment in vivo. Methods Mol. Biol. (Clifton, NJ) 689, 81 (2011)
  33. N.S. Rost, P. Cougo, S. Lorenzano, H. Li, L. Cloonan, M.J. Bouts, A. Lauer, M.R. Etherton, H.H. Karadeli, P.L. Musolino, W.A. Copen, K. Arai, E.H. Lo, S.K. Feske, K.L. Furie, O. Wu, Diffuse microvascular dysfunction and loss of white matter integrity predict poor outcomes in patients with acute ischemic stroke. J. Cereb. Blood Flow Metab. 38, 75 (2018)
  34. A. Sckell, M. Leunig, Dorsal skinfold chamber preparation in mice: studying angiogenesis by intravital microscopy. Methods Mol. Biol. (Clifton, NJ) 1430, 251 (2016)
  35. T. Shimozawa, K. Yamagata, T. Kondo, S. Hayashi, A. Shitamukai, D. Konno, F. Matsuzaki, J. Takayama, S. Onami, H. Nakayama, Y. Kosugi, T.M. Watanabe, K. Fujita, Y. Mimori-Kiyosue, Improving spinning disk confocal microscopy by preventing pinhole cross-talk for intravital imaging. PNAS 110, 3399 (2013)
  36. K. Shin-Ichiro, N. Hideomi, O. Shinya, in Yokogawa technical report english Edition 17. Confocal laser microscope scanner and CCD camera (2002)
  37. S. Stehbens, H. Pemble, L. Murrow, T. Wittmann, Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol. 504, 293 (2012)
  38. C.D.A. Stehouwer, Microvascular dysfunction and hyperglycemia: a vicious cycle with widespread consequences. Diabetes 67, 1729 (2018)
  39. G.J. Tangelder, D.W. Slaaf, A.M. Muijtjens, T. Arts, M.G.O. Egbrink, R.S. Reneman, Velocity profiles of blood platelets and red blood cells flowing in arterioles of the rabbit mesentery. Circ. Res. 59(5), 505-514 (1986). https://doi.org/10.1161/01.res.59.5.505. PMID: 3802426
  40. G.M. Tozer, S.M. Ameer-Beg, J. Baker, P.R. Barber, S.A. Hill, R.J. Hodgkiss, R. Locke, V.E. Prise, I. Wilson, B. Vojnovic, Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy. Adv. Drug Deliv. Rev. 57, 135 (2005)
  41. R. F. Tuma, W. F. Duran, and K. Ley, (eds.), in Handbook of Physiology: Microcirculation, 2nd edn. (Academic Press, 2008).
  42. K. Tyml, C.H. Budreau, A. New, Preparation of rat extensor Digitorum longus muscle for Intravital investigation of the microcirculation. Int. J. Microcirc. Clin. Exp. 10, 335 (1991)
  43. A.L. van de Ven, M. Wu, J. Lowengrub, S.R. McDougall, M.A.J. Chaplain, V. Cristini, M. Ferrari, H.B. Frieboes, Integrated Intravital microscopy and mathematical modeling to optimize nanotherapeutics delivery to tumors. AIP Adv. 2, 011208 (2012)
  44. S. Zaim, J.H. Chong, V. Sankaranarayanan, A. Harky, COVID-19 and multiorgan response. Curr. Probl. Cardiol. 45(8), 100618 (2020). https://doi.org/10.1016/j.cpcardiol.2020.100618
  45. W.G. Zijlstra, A. Buursma, W.P. Meeuwsen-van der Roest, Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 37, 1633 (1991)