• 제목/요약/키워드: Fluid-Structure Interaction(FSI)

검색결과 236건 처리시간 0.031초

Effect of bidirectional internal flow on fluid.structure interaction dynamics of conveying marine riser model subject to shear current

  • Chen, Zheng-Shou;Kim, Wu-Joan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.57-70
    • /
    • 2012
  • This article presents a numerical investigation concerning the effect of two kinds of axially progressing internal flows (namely, upward and downward) on fluid.structure interaction (FSI) dynamics about a marine riser model which is subject to external shear current. The CAE technology behind the current research is a proposed FSI solution, which combines structural analysis software with CFD technology together. Efficiency validation for the CFD software was carried out first. It has been proved that the result from numerical simulations agrees well with the observation from relating model test cases in which the fluidity of internal flow is ignorable. After verifying the numerical code accuracy, simulations are conducted to study the vibration response that attributes to the internal progressive flow. It is found that the existence of internal flow does play an important role in determining the vibration mode (/dominant frequency) and the magnitude of instantaneous vibration amplitude. Since asymmetric curvature along the riser span emerges in the case of external shear current, the centrifugal and Coriolis accelerations owing to up- and downward internal progressive flows play different roles in determining the fluid.structure interaction response. The discrepancy between them becomes distinct, when the velocity ratio of internal flow against external shear current is relatively high.

복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction)

  • 윤태흠;박영호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

풍력발전기 블레이드 패브릭 스킨의 정적 유체-구조연성 해석에 관한 연구 (Static Fluid Structure Interaction Analysis of Wind Turbine Blade Skin Fabric)

  • 안형주;배재성;황재혁
    • 항공우주시스템공학회지
    • /
    • 제10권4호
    • /
    • pp.1-10
    • /
    • 2016
  • 본 논문에서는 박막구조물 형태를 가진 풍력발전기 블레이드 패브릭스킨의 유체-구조연성해석을 수행하였다. 풍력발전기 블레이드는 5MW급의 중대형 풍력발전기로 선정하여 분석하였으며, 해석의 타당성을 높이기 위하여 다양한 참고문헌을 이용한 검증을 마쳤다. 본 해석에 앞서서, CFD해석과 모달해석을 나누어서 해석을 수행한 후 연성해석 진행하였다. CFD해석에서 나온 공기력 데이터를 장력으로 유지되는 박막구조물인 패브릭스킨에 적용시켜서 최종 구조물의 변형과 변형된 구조물로 인한 공기력의 변화를 확인하였다.

Numerical Simulation of Blood Cell Motion in a Simple Shear Flow

  • Choi, Choeng-Ryul;Kim, Chang-Nyung;Hong, Tae-Hyub
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1487-1491
    • /
    • 2008
  • Detailed knowledge on the motion of blood cells flowing in micro-channels under simple shear flow and the influence of blood flow is essential to provide a better understanding on the blood rheological properties and blood cell aggregation. The microscopic behavior of red blood cell (RBCs) is numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT (ANSYS Inc., USA). The employed FSI method could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

  • PDF

A study on prediction of whipping effect of very large container ship considering multiple sea states

  • Kim, Beomil;Choung, Joonmo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.387-398
    • /
    • 2020
  • In the design stage of the very large container ships, some methodologies for the whipping effects have been developed, but most of them are based on single sea state. We developed a methodology that considers multiple sea states. Fluid-structure Interaction (FSI) analyses with one dimensional structural model were carried out to capture slamming-induced transient whipping behaviors. Because of the nature of random phases of the applied wave spectra, the required period for entire FSI analyses was determined from the convergence study where the whipping effect became stable. Low pass filtering was applied to the transient whipping responses to obtain the hull girder bending moment processes. Peak counting method for the filtered whipping responses was used to obtain collection of the vertical bending moment peaks. The whipping effect from this new method is compared with that from based on single sea state approach. The efficiency and advantage of the new methodology are presented.

유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구 (Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis)

  • 마상범;김광용;최재호;이원석
    • 한국수소및신에너지학회논문집
    • /
    • 제28권1호
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

거대 구조물의 유체-구조 연계 해석을 위한 효과적인 보간기법에 대한 연구 (A Study on the Effective Interpolation Methods to the Fluid-Structure Interaction Analysis for Large-Scale Structure)

  • 이기두;이영신;김동수;이대열
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.433-441
    • /
    • 2009
  • 대부분의 자연현상은 다학제 특성을 갖고 표현된다. 유체-구조 연계(FSI) 문제의 경우 기존에 검증된 전산유체 해석 프로그램 및 구조해석 프로그램을 그대로 사용할 수 있다는 장점 때문에 약결합 방식이 일반적으로 이용된다. 그러나 약결합을 이용하여 해석을 수행하기 위해서는 서로 다른 특성을 갖는 격자시스템으로 발생되는 자료의 교환을 위해서 보간 및 사상이 필수적이다. 본 연구에서는 전역지지 및 국부지지 방사기저함수(RBF)를 이용한 보간 및 가상일의 원리를 적용한 사상의 성능을 단순 3차원 형상에 적용하여 검토하였다. 국부지지 RBF에 공간분할 트리의 일종으로 빠른 공간 탐색을 가능하게 해주는 kd-tree를 사용하는 경우 효과적으로 거대 구조물의 FSI에도 보간 및 사상이 적용 가능함을 여객기 형상의 항공기 모형을 이용하여 제시하였다.

선형압축기 밸브시스템의 유체-구조 연성 유한요소해석 (Fluid-structure-interacted Finite Element Analysis of Valve System In a Linear Compressor)

  • 최용식;이준호;정의봉;정철웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 추계학술대회논문집
    • /
    • pp.121-122
    • /
    • 2008
  • In this paper, computational analysis on the steady-state and transient behaviors of the valve system is discussed. Fluid-structure interaction (FSI) is taken into account using ADINA software. The computational results are experimentally validated.

  • PDF

고받음각에서 기동하는 미사일의 공력-구조 연계 해석 (FLUID-STRUCTURE INTERACTION ANALYSIS FOR HIGH ANGLE OF ATTACK MANEUVER MISSILE)

  • 노경호;박미영;박수형;이재우;변영환
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.111-114
    • /
    • 2007
  • Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM) are used to perform aerodynamics analysis and structure analysis. For the fluid-structure interaction analysis, each technology should be considered as well. The process of aerodynamics-structure coupled analysis can be applied to various integrated analyses from many research fields. In this study, the aerodynamics-structure coupled analysis is performed for the missile at high angle of attack condition through the use of Computational Fluid Dynamics (CFD) and the Finite Element Method (FEM). For this purpose, the aerodynamics-structure coupled analyses procedure for the missile are established. The results of the integrated analysis are compared with rigid geometry of the missile and the effect of the deformation will be addressed.

  • PDF