• Title/Summary/Keyword: Fluid-Particle Interaction

Search Result 91, Processing Time 0.022 seconds

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

DISCRETE PARTICLE SIMULATION OF DENSE PHASE PARTICULATE FLOWS

  • Tsuji Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.11-19
    • /
    • 2005
  • First, methods of numerical analysis of gas-particle flows is classified into micro, meso and macro scale approaches based on the concept of multi-scale mechanics. Next, the explanation moves on to discrete particle simulation where motion of individual particles is calculated numerically using the Newtonian equations of motion. The author focuses on the cases where particle-to-particle interaction has significant effects on the phenomena. Concerning the particle-to-particle interaction, two cases are considered: the one is collision-dominated flows and the other is the contact-dominated flows. To treat this interaction mathematically, techniques named DEM(Distinct Element Method) or DSMC (Direct Simulation Monte Carlo) have been developed DEM, which has been developed in the field of soil mechanics, is useful for the contact -dominated flows and DSMC method, developed in molecular gas flows, is for the collision-dominated flows. Combining DEM or DSMC with CFD (computer fluid dynamics), the discrete particle simulation becomes a more practical tool for industrial flows because not only the particle-particle interaction but particle-fluid interaction can be handled. As examples of simulations, various results are shown, such as hopper flows, particle segregation phenomena, particle mixing in a rotating drum, dense phase pneumatic conveying, spouted bed, dense phase fluidized bed, fast circulating fluidized bed and so on.

  • PDF

Experimental studies on the axisymmetric sphere-wall interaction in Newtonian and non-Newtonian fluids

  • Lee, Sang-Wang;Sohn, Sun-Mo;Ryu, Seung-Hee;Kim, Chongyoup;Song, Ki-Won
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.3
    • /
    • pp.141-148
    • /
    • 2001
  • In this research, experimental studies leave been performed on the hydrodynamic interaction between a spherical particle and a plane wall by measuring the force between the particle and wall. To approach the system as a resistance problem, a servo-driving system was set-up by assembling a microstepping motor, a ball screw and a linear motion guide for the particle motion. Glycerin and dilute solution of polyacrylamide in glycerin were used as Newtonian and non-Newtonian fluids, respectively. The polymer solution behaves like a Boger fluid when the concentration is 1,000 ppm or less. The experimental results were compared with the asymptotic solution of Stokes equation. The result shows that fluid inertia plays all important role in the particle-wall interaction in Newtonian fluid. This implies that the motion of two particles in suspension is not reversible even in Newtonian fluid. In non-Newtonian fluid, normal stress difference and viscoelasticity play important roles as expected. In the dilute solution weak shear thinning and the migration of polymer molecules in the inhomogeneous flow field also affect the physic of the problem.

  • PDF

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

Development of Particle Simulation Method for Analysis of Fluid-Structure Interaction Problems (유체-구조 상호연성 해석을 위한 입자법 시뮬레이션 기술 개발)

  • Hwang, Sung-Chul;Park, Jong-Chun;Song, Chang-Yong;Kim, Young-Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • Recently, some fluid-structure interaction (FSI) problems involving the fluid impact loads interacting with structures, such as sloshing, slamming, green-water, etc., have been considered, especially in the ocean engineering field. The governing equations for both an elastic solid model and flow model were originally derived from similar continuum mechanics principles. In this study, an elastic model based on a particle method, the MPS method, was developed for simulating the FSI problems. The developed model was first applied to a simple cantilever deflection problem for verification. Then, the model was coupled with the fluid flow model, the PNU (Pusan National University modified)-MPS method, and applied to the numerical investigation of the coupling effects between a cantilever and a mass of water, which has variable density, free-falling to the end of the cantilever.

Direct Simulation of the Magnetic Interaction of Elliptic Janus Particles Suspended in a Viscous Fluid (점성유체에 분산된 타원형 야누스 입자의 자성 상호작용에 관한 직접수치해석)

  • Kim, Hei Eun;Kang, Tae Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.455-462
    • /
    • 2017
  • The magnetic interaction between elliptic Janus magnetic particles are investigated using a direct simulation method. Each particle is a one-to-one mixture of paramagnetic and nonmagnetic materials. The fluid is assumed to be incompressible Newtonian and nonmagnetic. A uniform magnetic field is applied externally in a horizontal direction. A finite-element-based fictitious domain method is employed to solve the magnetic particulate flow in the creeping flow regime. In the magnetic problem, the magnetic field in the entire domain, including the particles and the fluid, is obtained by solving the governing equation for the magnetic potential. Then, the magnetic forces acting on the particles are calculated via a Maxwell stress tensor formulation. In a single particle problem, it is found that the orientation angle at equilibrium is affected by the aspect ratio of the particle. As for the two-particle interaction, the dynamics and the final conformation of the particles are significantly influenced by the aspect ratio, the orientation, and the spatial positions of the particles. For the given positions of the particles, the fluid flow is also influenced by the orientation of each particle. The self-assembly structure of the particles is not a fixed one, but it varies with the above-mentioned factors.

Dielectric Interaction of Particle in Electrophoresis (전기 영동에서의 입자간의 전기력에 의한 상호 작용)

  • Lee, Ho-Rim;Kang, Kwan-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.171-174
    • /
    • 2006
  • When two particles close to each other are in electrophoretic motion, each particle is under the influence of the non-uniform electric field generated by the other particle. Two particles may attract or repel each other due to the dielectric force depending on their positions in the non-uniform electric field. It is shown analytically that two adjusting rigid particles can form an aggregate due to the dielectric interaction. To verify the validity of the theoretical prediction, an experiment is carried out by using a microchannel. In the experiment, AC electric field is used to eliminate cumbersome electroosmotic flow. The experimental result shows that the particles form a chain-like structure, which is typically observed in electro-rheological fluid, due to the dielectric interaction.

  • PDF

Effect of Fluid Viscosity on the Suspension of a Single Particle in Channel Flow (채널 유동에서 점성이 단일 입자 혼합 유동의 suspension에 미치는 영향)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.194-200
    • /
    • 2009
  • Suspension of a single solid particle in a channel flow with a constant pressure gradient is studied numerically. The interaction of a circular particle with a surrounding Newtonian fluid is formulated using a combined formulation. Numerical results are presented using two dimensionless variables: the sedimentation Reynolds number and the generalized Froude number. From the present results, it has been shown that a solid particle is suspended at a smaller generalized Froude number as the viscosity of the surrounding fluid increases. The time taken for equilibrium position is found to be smaller as fluid viscosity increases when both : the sedimentation Reynolds number and the generalized Froude number are the same while, at the same situation, the dimensionless time taken for equilibrium position is to be nearly the same regardless of fluid viscosity when a dimensionless time variable is introduced

Interaction of Fluid and Thin Shell Structure with Signed Distance Fields (거리 장 함수를 이용한 얇은 막과 유체의 예측 기반 상호작용 시뮬레이션)

  • Kim, Po-Ram;Shin, Seung-Ho;Lim, Jae-Ho;Kim, Chang-Hun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2011
  • In Computer Graphics, interaction between a particle-based fluid and a rigid body is important. In General, this interaction has been simulated in a discrete environment. As a result, there have been lots of errors. The larger the time step is used, the bigger the error is. This paper describes how to minimize the error in a discrete environment. To be specific, the collision handling method is that estimates particle collision using a signed distance function increases continuously according to space. At the time a fluid particle and a rigid body model collide, the exact collision time and the position is estimated. Through this, we propose the method how to be simulated the interaction between a fluid and a rigid body model as a continuous environment.

Hydrodynamic interaction between two cylinders in planar shear flow of viscoelastic fluid

  • Jung, Hyun-Wook;Daejin Won;Kim, Chongyoup
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.203-207
    • /
    • 2002
  • Particle-particle interaction is of great importance in the study of suspension rheology. In this research we have investigated the hydrodynamic interaction between two identical cylinders in viscoelastic fluids numerically as a model problem for the study of viscoelastic suspension. We confine two neutrally buoyant cylinders between two parallel plates and impose a shear flow. We determine the migration velocity of two cylinders. The result shows that cylinders move toward or away from each other depending upon the initial distance between them and that there is an equilibrium distance between two cylinders in viscoelastic fluids regardless of the initial distance. In the case of Newtonian fluid, there is no relative movement as expected. The results partly explain the chaining phenomena of spherical particles in shear flows of viscoelastic fluids.