• Title/Summary/Keyword: Fluid field

Search Result 2,250, Processing Time 0.03 seconds

Feasibility Study on the Two-dimensional Free Surface Simulation Using the Lattice-Boltzmann Method (Lattice Boltzmann Method를 이용한 2차원 자유수면 시뮬레이션 기법연구)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • The numerical simulation using the Lattice Boltzmann Method in the field of computational fluid dynamics becomes wider in the engineering applications because of its simplicity of update rules compared to the conventional Navier-Stokes solvers. Here, a two-dimensional D2Q9 LB model is numerically tested with a few new computational treatment on the free surface. The single relaxation time is applied under the gravitational field where applied only in the higher density fluid because of its big density difference. At the free surface, the reconstruction techniques in combination with boundary conditions is adopted in order to get some distribution function coming into the fluid site from the air one, and surface tension, early stable test for the gravitional field is considered in it. With the implementation of the gravitational profile, conserving the overall mass and grid dependency are observed during the calculations and freesurface advance track is well captured with an experiment.

Mechanical Properties for Methyl Cellulose(MC) Ingredient ER Fluids According to the Numbers of the Electrical Field Cycles (전기장 싸이클 수에 따른 MC성분 ER유체의 기계적성질)

  • 김옥삼;박우철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.296-301
    • /
    • 2001
  • Electro-Rheological (ER) fluids belong to a class of colloidal suspensions whose global characteristics can be controlled by the imposition of an appropriate external electrical field upon the fluid domain. The ER fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when subjected to external electrical fields. This paper presents experimental results on mechanical properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) ingredient choosing 25% of particle weight-concentration. Following the construction of test for mechanical properties of ER fluid, the shear stress, dynamic yield stress and current density of the ER fluids are experimentally distilled as a function of electric field cycles. The mechanical properties test of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Numerical Analysis of the Whole Field Flow in a Centrifugal Fan for Performance Enhancement - The Effect of Boundary Layer Fences of Different Configurations

  • Karanth, K. Vasudeva;Sharma, N. Yagnesh
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.2
    • /
    • pp.110-120
    • /
    • 2009
  • Generally the fluid flows within the centrifugal impeller passage as a decelerating flow with an adverse pressure gradient along the stream wise path. This flow tends to be in a state of instability with flow separation zones on the suction surface and on the front shroud. Hence several experimental attempts were earlier made to assess the efficacy of using boundary layer fences to trip the flow in the regions of separation and to make the flow align itself into stream wise direction so that the losses could be minimized and overall efficiency of the diffusion process in the fan could be increased. With the development of CFD, an extensive numerical whole field analysis of the effect of boundary layer fences in discrete regions of suspected separation points is possible. But it is found from the literature that there have been no significant attempts to use this tool to explore numerically the utility of the fences on the flow field. This paper attempts to explore the effect of boundary layer fences corresponding to various geometrical configurations on the impeller as well as on the diffuser. It is shown from the analysis that the fences located on the impellers near the trailing edge on pressure side and suction side improves the static pressure recovery across the fan. Fences provided at the radial mid-span on the pressure side of the diffuser vane and near the leading edge and trailing edge of the suction side of diffuser vanes also improve the static pressure recovery across the fan.

Numerical Analysis of Electro-Hydrodynamic (EHD) Flows in Electrostatic Precipitators using Open Source Computational Fluid Dynamics (CFD) Solver (오픈 소스 전산 유체 역학 해석 프로그램을 이용한 전기집진기 내부 정전 유동 해석)

  • Song, Dong Keun;Hong, Won Seok;Shin, Wanho;Kim, Han Seok
    • Particle and aerosol research
    • /
    • v.9 no.2
    • /
    • pp.103-110
    • /
    • 2013
  • The electrostatic precipitator (ESP) has been used for degrading atmospheric pollutants. These devices induce the electrical forces to facilitate the removal of particulate pollutants. The ions travel from the high voltage electrode to the grounded electrode by Coulomb force induced by the electric field when a high voltage is applied between two electrodes. The ions collide with gas molecules and exchange momentum with each other thus inducing fluid motion, electrohydrodynamic (EHD) flow. In this study, for the simulation of electric field and EHD flow in ESPs, an open source EHD solver, "espFoam", has been developed using open source CFD toolbox, OpenFOAM(R) (Open Field Operation and Manipulation). The electric potential distribution and ionic space charge density distribution were obtained with the developed solver, and validated with experimental results in the literature. The comparison results showed good agreement. Turbulence model is also incorporated to simulate turbulent flow; hence the developed solver can analyze laminar and turbulent flow. In distributions of electric potential and space charge, the distributions become distorted and asymmetric as the flow velocity increases. The effect of electrical drift flow was investigated for different flow velocities and the secondary flow in a flow of low velocity is successfully predicted.

Water-hammer in the Pump Pipeline System with and without an Air-Chamber (에어챔버 설치에 따른 펌프관로계의 수격현상)

  • Lee, Sun-Kon;Yang, Cheol-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • When the pumps stopped in the operation by the power failure, the hydraulic transients take place in the sudden change of a velocity of pipe line. Each and every water hammer problem shows the critical stage to be greatly affected the facts of safety and reliability in case of power failure. The field tests of the water hammer executed at Cheong-Yang booster pump station having an air chamber. The effects were studied by both the practical experiments and the CFD(Computational Fluid Dynamics : Surge 2008). The result states that the system with water hammering protection equipment was much safer when power failure happens. The following data by a computational fluid dynamic analysis are to be shown below, securing the system stability and integrity. (1) With water hammering protection equipment. (1) Change of pressure : Up to $15.5\;kg/cm^2$ in contrary to estimating $16.88\;kg/cm^2$. (2) Change rate of water level : 52~33% in contrary to estimating 55~27%. (3) Note that the operational pressure of pump runs approx. 145 m, lowering 155 m of the regularity head of pump. (4) Note that the cycle of water hammering delays from 80 second to 100 second, together with easing the function of air value at the pneumatic lines. (2) Change of pressure without water hammering protection equipment : Approximate $22.86\;kg/cm^2$. The comprehensive result says that the computational fluid dynamics analysis would match well with the practical field-test. It was able to predict Max. or Min. water hammering time in a piping system. This study aims effectively to alleviate water hammering in a pipe line to be installed with air chamber at the pumping station and results in making the stability of pump system in the end.

Direct-current Dielectrophoretic Motions of a Single Particle due to Interactions with a Nearby Nonconducting Wall (비전도성 벽과의 상호작용에 따른 단일 입자의 직류 유전영동 운동)

  • Kang, Sangmo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.425-433
    • /
    • 2015
  • In this paper, we have numerically investigated two-dimensional dielectrophoretic (DEP) motions of a single particle suspended freely in a viscous fluid, interacting with a nearby nonconducting planar wall, under an externally applied uniform direct-current electric field. Particularly, we solve the Maxwell equation with a large sharp jump in the electric conductivity at the particle-fluid interface and then integrate the Maxwell stress tensor to compute the DEP force on the particle. Results show that, under an electric field parallel to the wall, one particle is always repelled to move far away from the wall and the motion depends strongly on the particle-wall spacing and the particle conductivity. The motion strength vanishes when the particle is as conductive as the fluid and increases as the conductivity deviates further from that of the fluid.

A Study on Inelastic Whipping Responses in a Navy Ship by Underwater Explosion (수중 폭발에 의한 함체의 비탄성 휘핑 응답에 관한 연구)

  • Kim, Hyunwoo;Seo, Jae Hoon;Choung, Joonmo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.6
    • /
    • pp.400-406
    • /
    • 2021
  • The primary effect of the far-field underwater explosion (UNDEX) is the whipping of the ship hull girder. This paper aims to verify why inelastic effects should be considered in the whipping response estimations from the UNDEX simulations. A navy ship was modeled using Timoshenko beam elements over the ship length uniformly keeping the constant midship section modulus. The transient UNDEX pressure was produced using two types of the Geers-Hunter doubly-asymptotic models: compressible and incompressible fluids. Because the UNDEX model based on incompressible fluid assumption provided more increased fluid volume acceleration in the bubble phase, the incompressible fluid-based UNDEX model was adopted for the inelastic whipping response analyses. The non-linear hull girder bending moment-curvature curve was used to embed inelastic effects in the UNDEX analyses where the Smith method was applied to derive the non-linear stiffness. We assumed two stand-off distances to see more apparent inelastic effects: 40.5 m and 35.5 m. In the case of the 35.5 m stand-off distance, there was a statistically significant inelastic effect in terms of the average of peak moments and the average exceeding proportional limit moments. For the conservative design of a naval ship under UNDEX, it is recommended to use incompressible fluid. In the viewpoint of cost-effective naval ship design, the inelastic effects should be taken into account.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Development of Flow Visualization Device with Smoke Generator in Learning Wind Tunnel (학습용 풍동의 연기 유동가시화 장치 개발)

  • Lim, Chang-Su;Choi, Jun-Seop
    • 대한공업교육학회지
    • /
    • v.32 no.2
    • /
    • pp.87-103
    • /
    • 2007
  • The purpose of this study was to develop of the smoke flow visualization device of learning wind tunnel, teaching-learning materials in order to demonstrate air-flow around the fluid-flow field qualitatively and understand the resistance concepts of fluid-flow in secondary school. The contents of this study were consisted of the development and experiment of smoke flow visualization for learning wind tunnel. The main results of this study were as follows: First, this developed teaching-learning material here will help students understand the fundamental physical phenomena related with the resistance of fluid and the various patterns of air-flow in the field of transportation technology. Second, flow visualization has shown the same tendency in both of theoretical and experimental patterns. Third, the airfoil model has the smallest wake region meaning resistance against air-flow of circular cylinder and square rod model. Forth, flow separation point at leading edge and wide wake region began to show under the angle of attack of airfoil model ${\alpha}$ is $20^{\circ}$. Fifth, the wake width of the flow field behind a golf ball with dimple became slightly narrower than that without dimple. Sixth, the developed device was made to apply the teaching and learning materials for the experiment and practice in order to increase students' interest and attitude.

A Dynamic Simulation on the Squeezing Flow of ER Fluids (전기유변 유체의 압착유동에 대한 동적 수치모사)

  • 김도훈;주상현;안경현;이승종
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.82-90
    • /
    • 1999
  • Electrorheological(ER) fluid is a material that shows the dramatic change of rheological properties under an electric field and responds reversibly in a few milliseconds. ER fluid's response to an electric field along with its fast switching capability allows ER devices to be precisely controlled. The real application with ER fluid, however, has many limitations to be overcome; temperature fluctuation, moisture, dust, aggregation, precipitation, and low yield stress, for example. The magnitude and the characteristics of yield stress of ER fluid plays an important role in practical applications. In this research, a dynamic simulation on the squeezing flow of the ER fluid was carried out. Numerical simulation on isolated chains was performed to find out the effect of hydrodynamic and electrostatic force depending on the chain location, the squeezing rate, and the chain structure. Suspension model that is composed of a large number of particles was also investigated. The increase of normal stresses as well as the existence of a yield stress at an earlier stage could be observed, and the effective control of the normal stresses could be achieved at an optimal condition of the hydrodynamic force and the electrostatic force.

  • PDF