DOI QR코드

DOI QR Code

Direct-current Dielectrophoretic Motions of a Single Particle due to Interactions with a Nearby Nonconducting Wall

비전도성 벽과의 상호작용에 따른 단일 입자의 직류 유전영동 운동

  • Received : 2015.01.09
  • Accepted : 2015.03.06
  • Published : 2015.05.01

Abstract

In this paper, we have numerically investigated two-dimensional dielectrophoretic (DEP) motions of a single particle suspended freely in a viscous fluid, interacting with a nearby nonconducting planar wall, under an externally applied uniform direct-current electric field. Particularly, we solve the Maxwell equation with a large sharp jump in the electric conductivity at the particle-fluid interface and then integrate the Maxwell stress tensor to compute the DEP force on the particle. Results show that, under an electric field parallel to the wall, one particle is always repelled to move far away from the wall and the motion depends strongly on the particle-wall spacing and the particle conductivity. The motion strength vanishes when the particle is as conductive as the fluid and increases as the conductivity deviates further from that of the fluid.

본 논문에서는 외부에서 균일한 직류전기장이 인가될 때 점성유체에 자유롭게 잠겨있는 단일 입자가 근처의 비전도성 평면 벽과의 상호작용 때문에 유발되는 2차원 유전영동 운동에 대하여 수치연구를 수행하였다. 특히 입자-유체 경계면에서 불연속적으로 급격히 변화하는 전기전도도를 가진 Maxwell 방정식을 해석하고 전기장을 구한 후 Maxwell 응력텐서를 적분하여 입자에 작용하는 유전영동 힘을 계산하였다. 해석 결과 전기장이 벽과 평행하게 인가될 때 입자는 항상 반발력이 유도되어 벽으로부터 멀어지는 방향으로 유전영동 운동이 발생하였으며, 그 운동특성은 입자와 벽 사이 간격과 입자의 전도도에 따라 크게 달라졌다. 운동 강도는 입자와 유체의 전도도가 서로 같으면 사라지나, 전도도가 서로 다르면 그 차이가 클수록 강도는 증가하였다.

References

  1. Cetin, B. and Li, D., 2011, "Dielectro-phoresis in Microfluidics Technology," Electrophoresis, Vol. 32, pp. 2410-2427. https://doi.org/10.1002/elps.201100167
  2. Hossan, M. R., Dillon, R., Roy, A. K. and Dutta, P., 2013, "Modeling and Simulation of Dielectrophoretic Particle-Particle Interactions and Assembly," Journal of Colloid and Interface Science, Vol. 394, pp. 619-629. https://doi.org/10.1016/j.jcis.2012.12.039
  3. Hossan, M. R., Dillon, R., Roy, A. K. and Dutta, P., 2014, "Hybrid Immersed Interface-Immersed Boundary Methods for AC Dielectrophoresis," Journal of Computational Physics, Vol. 270, pp. 640-659. https://doi.org/10.1016/j.jcp.2014.04.012
  4. Ai, Y., Zeng, Z. and Qian, S., 2014, "Direct Numerical Simulation of AC Dielectrophoretic Particle-Particle Interactive Motions," Journal of Colloid and Interface Science, Vol. 417, pp. 72-79. https://doi.org/10.1016/j.jcis.2013.11.034
  5. Squires, T. M. and Bazant, M. Z., 2006, "Breaking Symmetries in Induced-Charge Electroosmosis and Electrophoresis," Journal of Fluid Mechanics, Vol. 560, pp. 65-101. https://doi.org/10.1017/S0022112006000371
  6. Kilic, M. S. and Bazant, M. Z., 2011, "Induced-Charge Electrophoresis near a Wall," Electrophoresis, Vol. 32, pp. 614-628. https://doi.org/10.1002/elps.201000481
  7. Liu, H. and Bau, H. H., 2004, "The Dielectrophoresis of cylindrical and spherical particles submerged in shells and in semi-infinite media," Physics of Fluids, Vol. 16, pp. 1217-1228. https://doi.org/10.1063/1.1649237
  8. Young, E. W. K. and Li, D., 2005, "Dielectrophoretic Force on a Sphere near a Planar Boundary," Langmuir, Vol. 21, pp. 12037-12046. https://doi.org/10.1021/la0518546
  9. Kang, K. H., Xuan, X., Kang, Y. and Li, D., 2006, "Effects of dc-dielectrophoretic force on particle trajectories in microchannels," Journal of Applied Physics, Vol. 99, pp. 064702. https://doi.org/10.1063/1.2180430
  10. Lo, Y. J. and Lei, U., 2009, "Quasistatic Force and Torque on a Spherical Particle under Generalized Dielectrophoresis in the Vicinity of Walls," Applied Physics Letters, Vol. 95, pp. 253701. https://doi.org/10.1063/1.3277157
  11. Lo, Y. J. and Lei, U., 2010, "Experimental Validation of the Theory of Wall Effect on Dielectrophoresis," Applied Physics Letters, Vol. 97, p. 093702. https://doi.org/10.1063/1.3483129
  12. Liang, L., Ai, Y., Zhu, J., Qian, S. and Xuan, X., 2010, "Wall-Induced Lateral Migration in Particle Electrophoresis through a Rectangular Microchannel," Journal of Colloid and Interface Science, Vol. 347, pp. 142-146. https://doi.org/10.1016/j.jcis.2010.03.039
  13. Liang, L., Qian, S. and Xuan, X., 2010, "Three-Dimensional Electrokinetic Particle Focusing in a Rectangular Microchannel," Journal of Colloid and Interface Science, Vol. 350, pp. 377-379. https://doi.org/10.1016/j.jcis.2010.06.067
  14. Kang, S., 2014, "Dielectrophoretic Motion of Two Particles with Diverse Sets of the Electric Conductivity under a Uniform Electric Field," Computers and Fluids, Vol. 105, pp. 231-243. https://doi.org/10.1016/j.compfluid.2014.09.029
  15. Liu, X.-D., Fedkiw, R. P. and Kang, M., 2000, "A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains," Journal of Computational Physics, Vol. 160, pp. 151-178. https://doi.org/10.1006/jcph.2000.6444
  16. Kim, J., Kim, D. and Choi, H., 2001, "An Immersed-Boundary Finite-Volume Method for Simulations of Flow in Complex Geometries," Journal of Computational Physics, Vol. 171, pp. 132-150. https://doi.org/10.1006/jcph.2001.6778

Cited by

  1. Direct-Current Dielectrophoretic Motions of a Pair of Particles due to Interactions with a Nearby Nonconducting Wall vol.39, pp.10, 2015, https://doi.org/10.3795/KSME-B.2015.39.10.805