• Title/Summary/Keyword: Fluid Network

Search Result 328, Processing Time 0.022 seconds

Prediction of overall survival for patients with malignant glioma using convolutional neural network (합성곱 신경망 모델을 이용한 악성 뇌교종 환자 예후 예측)

  • Kwon, Junmo;Park, Hyunjin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.297-299
    • /
    • 2022
  • Malignant glioma has a poor prognosis with the reported median survival of between 6 months to 14 months. Thus, it is crucial to predict the accurate survival of patients with malignant glioma. In this paper, we propose a convolutional neural network to predict the overall survival and age of the patients. A total of four MRI modalities, T1, T1-contrast enhanced, T2, and fluid-attenuated inversion recovery, which effectively capture spatial characteristics of malignant glioma, were used as input images. Age is an important factor impacting the overall survival, thus incorporating it into the model will thereby improve the performance of the proposed model. Our model successfully predicted overall survival and age of the patients with pearson correlation coefficients of 0.1748 and 0.3056, respectively.

  • PDF

Cerebrospinal fluid analysis in 13 clinically healthy Beagle dogs; hematological, biochemical and electrophoretic findings

  • Kim, Il-Hwan;Jung, Dong-In;Yoo, Jong-Hyun;Kang, Byeong-Teck;Park, Chul;Park, Hee-Myung
    • Korean Journal of Veterinary Research
    • /
    • v.48 no.1
    • /
    • pp.105-110
    • /
    • 2008
  • The purpose of this study is to define the normal findings of cerebrospinal fluid (CSF) of the clinically healthy Beagle dogs and to provide basic information in diagnosis of neurologic disorders. CSF obtained from 13 clinically healthy dogs was examined for total and differential cell counts, total protein concentration, glucose and lactate dehydrogenase (LDH) concentration, specific gravity, turbidity, and protein electrophoresis. On gross examination, CSF samples evaluated were clear and colorless. Few red blood cells and nucleated cells were present. The mean concentration of glucose and LDH examined were 65.8 mg/dl and 2.7 mg/dl, respectively. The cellular components of CSF samples based on differential counts were monocytes (41.9%), activated macrophages (35.8%), lymphocytes (20.0%), neutrophils (1.6%), and eosinophils (0.7%). The fractions of electrophoretic protein in CSF were albumin (52.7%), alpha-globulin (16.5%), beta-globulin (24.8%), and gamma-globulin (3.0%). Results of albumin quota were ranged from 0.15 to 0.38. In conclusion, this study provided normal composition of CSF in Beagle dogs.

Optimal Measuring Point Selection Method of Indoor Temperature using CFD Analysis (CFD 해석을 이용한 실내 온도 최적 측정 위치 선정 방법)

  • Lee, Min-Goo;Jung, Kyung-Kwon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.7
    • /
    • pp.1559-1566
    • /
    • 2012
  • This paper proposed the method to find out the optimal sensing point of temperature in test-bed with the sensor of temperature, such as real residence. We selected optimal locations by checking temperature change which was simulated by the means of CFD (Computational Fluid Dynamics) and the variation of air flow. We made 3-dimensional model of the testbed using DesignBuilder software, and ran the CFD. We selected the optimum temperature measurement location of 1.5 m height from the floor and low temperature variation. The experiments were conducted 30 temperature and humidity sensors in real place. After that, we confirmed the results of temperature change.

Overload Surge Investigation Using CFD Data

  • Flemming, Felix;Foust, Jason;Koutnik, Jiri;Fisher, Richard K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.315-323
    • /
    • 2009
  • Pressure oscillations triggered by the unstable interaction of dynamic flow features of the hydraulic turbine with the hydraulic plant system - including the electrical design - can at times reach significant levels and could lead to damage of plant components or could reduce component lifetime significantly. Such a problem can arise for overload as well as for part load operation of the turbine. This paper discusses an approach to analyze the overload high pressure oscillation problem using computational fluid dynamic (CFD) modeling of the hydraulic machine combined with a network modeling technique of the hydraulic system. The key factor in this analysis is the determination of the overload vortex rope volume occurring within the turbine under the runner which is acting as an active element in the system. Two different modeling techniques to compute the flow field downstream of the runner will be presented in this paper. As a first approach, single phase flow simulations are used to evaluate the vortex rope volume before moving to more sophisticated modeling which incorporates two phase flow calculations employing cavitation modeling. The influence of these different modeling strategies on the simulated plant behavior will be discussed.

Recycling Technology of Crosslinked-Polymers Using Supercritical Fluid (초임계 유체를 이용한 가교고분자 재활용기술)

  • Koo, Chong-Min;Yu, Si-Won;Baek, Bum-Ki;Cho, Hang-Kyu;Lee, Youn-Woo;Hong, Soon-Man
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.111-120
    • /
    • 2012
  • Industrial wastes of crosslinked polymers have been burned or disposed of in landfills because there is no recycling technology due to their insoluble and infusible network chain structure. However, recycling of cross-linked polymers has been taken a growing attention because of issues of environmental pollution and of resources conservation. In this paper, uprising recycling technologies of crosslinked polymers using supercritical fluid are reviewed.

Optimization of Rotor Blade Stacking Line Using Three Different Surrogate Models

  • Jang, Choon-Man;Samad, Abdus;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.2 s.41
    • /
    • pp.22-31
    • /
    • 2007
  • This paper describes the shape optimization of rotor blade in a transonic axial compressor rotor. Three surrogate models, Kriging, radial basis neural network and response surface methods, are introduced to find optimum blade shape and to compare the characteristics of object function at each optimal design condition. Blade sweep, lean and skew are considered as design variables and adiabatic efficiency is selected as an objective function. Throughout the shape optimization of the compressor rotor, the predicted adiabatic efficiency has almost same value for three surrogate models. Among the three design variables, a blade sweep is the most sensitive on the object function. It is noted that the blade swept to backward and skewed to the blade pressure side is more effective to increase the adiabatic efficiency in the axial compressor Flow characteristics of an optimum blade are also compared with the results of reference blade.

Optimal Design of Water Jet Nozzles Utilizing Independence Design Axiom (독립공리 설계기법을 이용한 LCD 세정노즐의 최적설계)

  • Shin, Hyun-Suk;Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1240-1247
    • /
    • 2003
  • Water jet nozzle for LCD has been used as a wet cleaning process in many industries. It is necessary for the nozzle to consider cleaning effect and flux. In this paper, we applied the bubble dynamic theory(Rayleight-Plesset equation) to improve the cleaning efficiency. Generally, Rayleigh-Plesset equations for cavitation bubbles are used in analyzing computer simulation for caviting flows. Burst of bubbles causes potential energies and we can use these energies to remove organic and inorganic compounds on the LCD. Therefore, it is necessary to analyze the bubble generations and axiomatic design by computational fluid dynamics(CFD). By comparing the weight matrix of neural networks to the design matrix of axiomatic design, we propose methods to verify designs objectively. The optimal solution could be deduced by the regression analysis using the design parameters.

  • PDF

Thermal Characteristics of Graphite Foam Thermosyphon for Electronics Cooling

  • Lim, Kyung-Bin;Roh, Hong-Koo
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1932-1938
    • /
    • 2005
  • Graphite foams consist of a network of interconnected graphite ligaments and are beginning to be applied to thermal management of electronics. The thermal conductivity of the bulk graphite foam is similar to aluminum, but graphite foam has one-fifth the density of aluminum. This combination of high thermal conductivity and low density results in a specific thermal conductivity about five times higher than that of aluminum, allowing heat to rapidly propagate into the foam. This heat is spread out over the very large surface area within the foam, enabling large amounts of energy to be transferred with relatively low temperature difference. For the purpose of graphite foam thermosyphon design in electronics cooling, various effects such as graphite foam geometry, sub-cooling, working fluid effect, and liquid level were investigated in this study. The best thermal performance was achieved with the large graphite foam, working fluid with the lowest boiling point, a liquid level with the exact height of the graphite foam, and at the lowest sub-cooling temperature.

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

How to Avoid Severe Incidents at Hydropower Plants

  • Yasuda, Masashi;Watanabe, Satoshi
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.296-306
    • /
    • 2017
  • Hydropower is now changing its role from the energy generator into the most powerful and reliable tool for stabilizing the electrical network, especially under the increase of intermittent power sources like wind-power and solar-power. Although the hydropower plants are the most robust generating facilities, they are not immune from unexpected severe incidents having long downtime, considerable restoration cost and sometimes fatalities. The present paper provides some study results about severe incidents in the conventional hydropower plants, mainly about the flood, fire and electro-mechanical troubles, except for the incidents of civil facilities. It also provides some possible scenarios which may lead some measures how to avoid such incidents. Finally, it provides some comprehensible recommendations to avoid severe incidents based on experiences.