• 제목/요약/키워드: Fluid Behavior

검색결과 1,224건 처리시간 0.03초

유체유동을 갖는 외팔 파이프의 동특성 및 진동수에 미치는 설계인자의 영향 (Influence of Design Parameters on Dynamic Behavior and Frequencies of Cantilever ripe Conveying Fluid)

  • 윤한익;손인수;박일주
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1815-1823
    • /
    • 2003
  • The vibrational system of this study consists of a cantilever pipe conveying fluid, the moving masses upon it and having an attached tip mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity and the inertia force of the moving mass and the velocities of fluid flow in the pipe have been studied on the dynamic behavior and the natural frequency of a cantilever pipe by numerical method. The deflection of the cantilever pipe conveying fluid is increased due to the tip mass and rotary Inertia. After the moving mass passed upon the cantilever pipe, the amplitude of pipe is influenced by energy variation when the moving mass fall from the cantilever pipe. As the moving mass increase, the frequency of the cantilever pipe conveying fluid is increased. The rotary inertia of the tip mass influences much on the higher frequencies and vibration mode.

이동질량과 등분포접선종동력이 외팔보의 동특성에 미치는 영향 (Influence of Moving Masses on Dynamic Behavior of Cantilever Pipe Subjected to Uniformly Distributed Tangential Follower Forces)

  • 윤한익;김봉균;손인수
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.430-437
    • /
    • 2003
  • A conveying fluid cantilever pipe subjected to a uniformly distributed tangential follower force and three moving masses upon it constitute this vibrational system. The influences of the velocities of moving masses, the distance between two moving masses, and the uniformly distributed tangential follower force have been studied on the dynamic behavior of a cantilever pipe system by numerical method. The uniformly distributed tangential follower force is considered within its critical value of a cantilever pipe without moving masses, and three constant velocities and three constant distances between two moving masses are also chosen. When the moving masses exist on pipe, as the velocity of the moving mass and the distributed tangential follower force Increases. the deflection of cantilever pipe conveying fluid is decreased, respectively Increasing of the velocity of fluid flow makes the amplitude of a cantilever pipe conveying fluid decrease. After the moving mass passed upon the pipe, the tip- displacement of a pipe is influenced by the coupling effect between interval and velocity of moving mass and the potential energy change of a cantilever pipe. Increasing of the moving mass make the frequency of the cantilever pipe conveying fluid decrease.

Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2125-2136
    • /
    • 2004
  • In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts.

유체요소를 이용한 직사각형 유체 저장구조물의 지진해석 (Seismic Analysis of Rectangular Liquid Storage Structures Ssing Fluid Elements)

  • 김영석;김제민;윤정방
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.46-54
    • /
    • 1992
  • In this paper, behavior of rectangular storage structures under earthquake loadings are investigated. Linear sloshing is assumed in this study. The effect of the wall flexibility is considered. Eulerian and lagrangian approaches are presented. The Eulerian approach is carried out by solving the boundary value problem for the fluid motion. In the lagrangian approach, the fluid as well as the storage structure is modelled by the finite element method. The fluid region is discretized by using fluid elements. The (1 $\times$ 1)-reduced integration is carried out for constructing the stiffness matrices of the fluid elements. Seismic analysis of the coupled system is carried out by the response spectra method. The numerical results show that the fluid forces on the wall obtained by two approaches are in good agreements. By including the effect of the wall flexibility, the forces due to fluid motion can be increased very significantly.

  • PDF

Rheological Properties of Exopolysaccharide EPS-R Produced by Marine Bacterium Hahella chejuensis KCTC 2395

  • Ahn, Se-Hun;Yim, Joung-Han;Kim, Sung-Jin;Lee, Hong-Kum
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.808-811
    • /
    • 2001
  • The rheological properties of exopolysaccharide(EPS-R) produced by marine bacteria Hahella chjuensis KCTC 2395 was investigated. EPS-R solution showed a characteristic non-Newtonian behavior fluid properties. In aqueose dispersions of EPS-R 1%, consistency index(K) and flow behavior index(n) were 1,410 cp and 0.73. EPS-R solution was pseudoplastic fluid by power-low model. Rheological propertie of EPS-R was found to be influenced by the concentration of salt, pH, temperature and ionic compounds.

  • PDF

전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구 (Electrorheology of Chitosan Suspension by Conduction Models)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

수학적 해석 방법에 의한 액체저장탱크의 액동압 거동 해석 (Hydrodynamic Behavior Analysis of Vertical-Cylindrical Liquid-Storge Tanks by Mathematically Analytic Method)

  • 박종률;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.628-635
    • /
    • 2001
  • Hydrodynamic behavior and response of vertical-cylindrical liquid-storage tank is considered. The equation of the liquid motion is shown by Laplace's differential equation with the fluid velocity potential. The solution of the Laplace's differential equation of the liquid motion is expressed with the modified Bessel functions. Only rigid tank is studied. The effective masses and heights for the tank contents are presented for engineering design model.

  • PDF

Electrorheology of Hollow Polyaniline Pimelate Suspension by Conduction Model

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.1-4
    • /
    • 2006
  • The electro rheological behavior of the hollow polyaniline pimelate suspension in silicone oil was investigated. Hollow polyaniline pimelate suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.84 power on the electric field. The experimental results for the hollow polyaniline pimelate suspension correlated with the conduction models of Tang et al., and this suspension behaved as an ER fluid.

Rheology of Hollow Polyaniline Gutarate Suspension Under DC Electric Field

  • Choi, Ung-Su
    • KSTLE International Journal
    • /
    • 제9권1_2호
    • /
    • pp.36-38
    • /
    • 2008
  • The electrical and rheological behavior of the hollow polyaniline glutarate suspension in silicone oil was investigated. Hollow polyaniline glutarate suspension showed a typical ER response (Bingham flow behavior) under a DC electric field. The shear stress for the suspension exhibited the dependence with a factor equals to 0.95 power on the electric field. The experimental results for the hollow polyaniline glutarate suspension behaved as an ER fluid.

점성유체 감쇠기의 동특성에 관한 실험적 연구 (An Experimental Study of the Dynamic Characteristics of Viscous Fluid Dampers)

  • 권형오
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.243-248
    • /
    • 1998
  • This study was performed to obtain a numerical model for a viscous fluid damper from an experimental testing. The input signals for displacement were chosen as two types : a triangular and a sinusoidal forms. The performing test parameters were the area of the resistant plate, relative velocity between resistant plate and base plate, oil film thickness of the viscous fluid, but the temperature effect was neglected. The numerical model was established by assuming an non-Newtonian fluid behavior. The test results were summarized by the equation of F= 0.0308(ν/d)0.5125. Using the obtained for a real structure design was introduced.

  • PDF