해양 중소규모 가스전의 경제성에 대한 화두가 던져진 이후 전통 석유의 가격변동과 세계적인 환경규약 등에 맞물려 석유화학관련 산업계에서는 이를 효과적으로 대처하고 천연가스를 활용할 수 있는 공정을 개발하고자 하였다. 이에 Fischer-Tropsch 반응을 기반으로 하는 해상 GTL 공정(offshore gas-to-liquid process)이 제안되었고 부유시스템 platform으로 공정을 적용시키고자 마이크로채널 반응기가 떠오르고 있다. 본 논문에서는 단일 마이크로채널 반응기를 Fischer-Tropsch 반응을 기반으로 하여 Matlab과 ASPEN Hysys를 연동하여 모사하고 이로 얻어진 반응열을 도입해 상용 전산유체역학(computational fluid dynamics, CFD) 소프트웨어인 ANSYS fluent로 멀티 마이크로채널 반응기 모델을 제작하였다. 그리고 4가지의 설계변수인 냉각채널 넓이, 높이, 냉각채널과 반응채널의 간격, 냉각채널 간의 간격을 설정하고 이들의 변화에 따른 열유동을 3가지의 변수인 열유속, 냉각 및 반응채널의 최대온도의 변화를 시각화하여 그 경향성을 확인하였다. 경향성 분석 결과, 냉각채널의 넓이와 높이는 짧을수록 총 열유속이 높아졌으며 최대온도 역시 높아졌으나 냉각채널과 반응채널의 간격은 열유동에 거의 영향을 미치지 못하였다. 냉각채널 간의 간격은 짧을수록 총 열유속이 높아졌으며 최대온도는 낮아졌다. 따라서 적절한 냉각채널의 넓이와 높이를 제안하고 짧은 간격의 냉각채널 구조를 도입하여 반응채널의 열량을 충분히 제거할 수 있는 반응기설계에 대한 휴리스틱을 제안할 수 있었다. 이처럼 멀티채널 반응기의 모델을 설계하고 이로부터 적절한 변수를 선택해 그 경향성을 확인할 수 있는 방법을 통해 설계 단계에서부터 적절한 반응기 구조에 대한 제안을 하는데 도움을 줄 것이다.
본 연구는 입기구가 11개이고 배기구가 9개인 무창이유자돈사에 대하여 CFD 시뮬레이션을 실시함으로써 겨울철 최적 환기를 위한 입 배기구의 위치와 개수 및 최적 공기 유입속도를 구명하고자 수행되었다. 배기팬에 가까운 돈방의 경우에는 나머지 돈방에 비해 상대적으로 음압이 크기 때문에 환기가 많이 되는 것으로 나타났고, 나머지 돈방의 경우에는 음압이 작아 환기가 적게 되는 것으로 나타났다. 이런 이유로 동일 면적의 입기구를 설치함에 있어서 같은 간격으로 배치하면 환기가 불균일하게 이루어지기 때문에, 배기팬에 가깝게 위치한 돈방에서는 입 배기구를 나머지 돈방에 비해 적게 만들어 주거나 간격을 넓게 만들어 줌으로써 균일한 환기를 할 수 있는 것으로 분석되었다. 특히 입기구가 11개이고 배기구가 9개인 무창돈사의 경우에는 동일 선상에 있는 입기구 4개를 폐쇄하며 배기구 1개는 완전 폐쇄하고 2개는 2/3를 폐쇄하였을 때 환기가 균일하게 되는 것으로 나타났다. 또한 실험돈사와 같이 돈사의 폭이 3 m 정도일 경우에는 입기구의 입공기 속도가 0.5 $m\;sec^{-1}$ 정도로 유지될 때 틈바닥 위 0.1 m 높이 위치의 풍속이 적정수준으로 유지되는 것으로 나타났다.
사용후핵연료 운반용기 표면온도가 $85^{\circ}C$를 초과할 경우, 대인용 보호막(Personnel Barrier) 또는 운반용 덮개(Transport Hood)를 설치하여 운반 중 운반용기 표면에 사람이 직접 접근할 수 없도록 하여야 한다. 운반용 덮개가 설치된 경우, 열적 안전성 평가의 한 가지 경우인 정상조건 열해석 시, 외부환경 경계조건(환경온도 및 외부복사온도)으로 적용하기 위해서 운반용 덮개 내부 열 환경 조건(내부 공기온도 및 운반용 덮개 표면온도)을 계산해야 한다. 따라서 본 연구에서는 운반용 덮개 내부 공기온도 및 표면온도를 계산하기 위한 해석적 방법 및 열전달 특성에 대한 분석을 수행하였고 CFD 해석 결과와 비교를 통해 타당성을 검증하였다.
농산물 저온저장고 내부의 온도분포 균일화를 수치해석적으로 분석하기 위해 3차원 CFD 시뮬레이션을 수행하였다. CFD 시뮬레이션 모델은 속도벡터 및 온도분포 측정치와 비교를 통해 검증하였으며, 온도분포 균일화 향상을 위한 적정 팬용량 및 적재방법을 설정하기 위해 몇 가지 팬풍속 및 저장물과 벽체간의 거리 등에 대해 기류패턴과 온도 분포를 분석하였다. CFD 시뮬레이션의 검증에서 속도벡터 분포는 PIV시스템에 의한 측정치와 비교했을 때 표준 k-$\varepsilon$모델 예측치와 측정치의 상대적 오차는 24.5%로 나타났고, RSM 모델 예측치와 측정치의 상대적 오차는 16.7%로 나타나 RSM 난류모델의 예측 정밀도가 더 높은 것으로 나타났다. 온도분포 검증 결과 실측치와 측정치의 R. M. S. 값은 농산물 무적재 상태에서 $0.33^{\circ}C$, 농산물 적재 상태에서는 $0.28^{\circ}C$로 나타났으며 예측값과 측정값의 온도분포 경향은 잘 일치하는 것으로 나타났다. 검증된 시뮬레이션 모델을 이용하여 $6{\times}10$열 2단 팔레트에 농산물이 적재되고 냉각용 송풍팬이 2개인 저온저장고에 대해 송풍팬의 풍량 및 저장물과 벽체와의 간격 변화의 영향을 분석한 결과, 저장물과 벽체와의 거리는 300 mm 이상, 송풍량은 300 CMM 이상에서 저장고 내의 공기 온도차는 $1^{\circ}C$이내로 유지되며 팔레트 사이에 간격을 둔 경우 온도분포의 균일성이 향상되는 것으로 나타났다.
본 연구에서는 초고층 건축물 화재 시 피난 안전 구역이 있는 피난 층에서 화재실로부터 발생하는 연기의 거동을 파악하기 위하여 상용코드를 사용하여 수치해석을 하였다. 화재를 모사하기 위하여 10 MW의 발열량에 해당하는 온도와 속도를 이용하여 부력 plume을 적용하였으며 종 보존 방정식을 이용하여 화재 연기 거동을 예측하였다. 피난 안전 구역에 제연 댐퍼를 설치하여 급기 가압 제연 시스템을 적용하였으며 화재실 문이 열린 경우 25 $m^3/s$, 화재실과 부속실 문이 동시에 열린 경우 50 $m^3/s$의 제연 댐퍼송풍량은 화재 안전 기준 NFSC 501-A를 만족하며 충분히 제연이 가능하다는 것을 확인하였다. 부속실문이 열린 경우, 화재실의 문이 닫혀 있더라도 문과 벽 사이의 틈새 면적으로 연기가 피난 안전 구역으로 유입될 가능성이 있다. 또한, 50 $m^3/s$ 높은 송풍량으로 제연 중 화재실 문이 닫힐 경우 피난자가 화재실에 고립될 가능성을 확인하였다. 그러므로 피난자의 안전을 위해 제연 송풍량의 조절이 필요하며 본 연구에서는 피난 시나리오에 따른 적절한 송풍량을 제안한다.
Recently, rudder erosion due to cavitation has been frequently reported on a semi-spade rudder of a high-speed large ship. This problem raises economic and safety issues when operating ships. The semi-spade rudders have a gap between the horn/pintle and the movable wing part. Due to this gap, a discontinuous surface, cavitation phenomenon arises and results in unresolved problems such as rudder erosion. In this study, we made a rudder model for 2-D experiments using the NACA0020 and also manufactured gap flow blocking devices to insert to the gap of the model. In order to study the gap flow characteristics at various rudder deflection angles($5^{\circ}$, $10^{\circ}$, $35^{\circ}$) and the effect of the gap flow blocking devices, we carried out the velocity measurements using PIV(Particle Image Velocimetry) techniques and cavitation observation using high speed camera in Seoul National University cavitation tunnel. To observe the gap cavitation on a semi-spade rudder, we slowly lowered the inside pressure of the cavitation tunnel until cavitation occurred near the gap and then captured it using high-speed camera with the frame rate of 4300 fps(frame per second). During this procedure, cavitation numbers and the generated location were recorded, and these experimental data were compared with CFD results calculated by commercial code, Fluent. When we use gap flow blocking device to block the gap, it showed a different flow character compared with previous observation without the device. With the device blocking the gap, the flow velocity increases on the suction side, while it decreases on the pressure side. Therefore, we can conclude that the gap flow blocking device results in a high lift-force effect. And we can also observe that the cavitation inception is delayed.
The calculation of steady-state cavitating flows around Supercavitating Underwater Bodies (SUB's), which consist of a circular disk head (cavitator), a conical fore-body, a cylindrical middle-body and either a boat-tail or a flare-tail, are carried out. To calculate the axisymmetric cavitating flow, used is a commercial computational fluid dynamics code based on the finite volume method, Fluent. From the analysis of numerical results, the cavity and drag, affected by the fore-body and tail of the SUB's, are investigated. Firstly, the effect of the fore-body shape is investigated with the same disk cavitator and a cylindrical rear-body of fixed diameter. Then with the same cavitator and a fixed fore-body, the effect of the rear-body shape is investigated. Before the cavity generated by the cavitator covers the slant of fore-bodies sufficiently, the larger the cone angle of the fore-body(i.e., the shorter the slant length), the larger the drag and the slower the development of cavity. After the cavity covers the fore-body completely so that the pressure drag component of the body is vanished, the characteristics of drag-velocity curves are identical. Also, as the tail angle is bigger, the cavity generated by the cavitator is suppressed further and the drag becomes larger. The peak of the drag appears for the flare-tail, i.e., when the tail angle is positive(+). On the contrary, the trough of the drag appears for the boat-tail, i.e., when the tail angle is negative(-). When the tail angle is 5 degrees, the peak of the drag appears at the body speed of 80m/s and the value of the drag is 43% larger than that at the design speed of 100m/s. When the tail angle is -5 degrees, the trough of the total drag appears at 75m/s and that drag is 30% smaller than that of the cavitator, which means the rest of the body has a negative drag.
Blanket is of vital importance for engineering application of the fusion reactor. Nuclear heat deposition in materials is the main heat source in blanket structure. In this paper, the three-dimensional method for thermal-hydraulics/neutronics coupling analysis is developed and applied for the full-scale module of the helium-cooled ceramic breeder tritium breeding blanket (HCCB TBB) designed for China Fusion Engineering Test Reactor (CFETR). The explicit coupling scheme is used to support data transfer for coupling analysis based on cell-to-cell mapping method. The coupling algorithm is realized by the user-defined function compiled in Fluent. The three-dimensional model is established, and then the coupling analysis is performed using the paralleled Coupling Analysis of Thermal-hydraulics and Neutronics Interface Code (CATNIC). The results reveal the relatively small influence of the coupling analysis compared to the traditional method using the radial fitting function of internal heat source. However, the coupling analysis method is quite important considering the nonuniform distribution of the neutron wall loading (NWL) along the poloidal direction. Finally, the structure optimization of the blanket is carried out using the coupling method to satisfy the thermal requirement of all materials. The nonlinear effect between thermal-hydraulics and neutronics is found during the blanket structure optimization, and the tritium production performance is slightly reduced after optimization. Such an adverse effect should be thoroughly evaluated in the future work.
본 연구는 잠수기 어업용 수중무선전화기를 설계하는데 있어 최적의 반송 주파수와 송신 신호의 음원 준위를 결정할 목적으로 우리 나라 잠수기 주 조업장의 하나인 거제와 통영 해역의 해양 배경소음과 조업중인 잠수기 어장의 수중 소음에 대하여 검토, 고찰한 결과를 요약하면 다음과 같다. 1. 거제와 통영의 잠수기 어장의 해양 배경 소음을 분석한 결과, 음압 준위는 25∼301kHz 부근에서 가장 낮아 52∼57dB이었고, 주변 통항 선박량과 산업시설이 많은 거제 해역이 통영 해역보다 약 5dB 더 높았다. 2. 거제와 통영의 잠수기 어선의 조업중의 수중소음을 비교하면, 최저 음압준위는 30kHz 부근에서 거제 어장에서는 67dB로서 통영의 62d묘보다 5dB 높은 음압 준위를 나타냈다. 이것은 거제 해역은 잠수기 어선의 규모도 통영 해역의 잠수기 어선보다 약간 크고, 분사기를 사용하여 작업하는데 비해 통영 해역은 잠수기 어선의 크기도 상대적으로 작고, 주 어획 대상물이 달라 분사기를 사용하지 않는 것이 그 원인으로 판단된다. 3. 거제 해역의 패류 채취용 분사기를 사용할 때의 수중 소음의 음압 준위는 102dB었다. 4. 거제 해역의 조업중에 대한 수중 배경 소음을 67dB라 가정할 때, 최대 500m까지 통화하기 위한 송신 신호의 음원 준위는 131dB 정도이다. 그러나, 통영 해역의 잠수기 조업은 분사기를 사용하지 않는 조업으로 이 경우 배경 소음은 약 62dB로서 송신 신호의 음원 준위는 126dB정도이다. 잠수기 조업중이 아닌 경우 즉, 스쿠버 다이버용 수중무선 전화기인 경우에는 배경 소음이 52∼57dB이므로 송신 신호의 음원 준위는 l16∼121dB이면 될 것으로 판단된다. 협동학습 모형이 수학 수업에 보다 발전적으로 널리 적용되기를 기대한다.cal results well visualized the streamlines, pressure fields, and speed vectors of a simple cambered and slot cambered otter board with slot size 0.02C. The slot cambered one with slot size 0.02C was shown that pressure field was distributed moderately on front and back side of otter board. And, the delay and decrease of separation were favorably achieved by flow through slot. 4. Computed result on the pattern of hydrodynamic field and the values of C/sub L/ and C/sub D/ by the commercial CFD code, FLUENT, show almost the same as those of the experimental result.erence was found in its fragrance. And, no difference was found in brightness and viscosity between samples. As a result of conducting the palatability test, no difference was showed in the appearance, but as for the overall palatability
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.