• 제목/요약/키워드: Flue-gas

검색결과 607건 처리시간 0.122초

하이브리드/이중 선회제트 연소기에서 공기 예열온도에 의한 배출 특성 연구 (A study of Overall Combustion Characteristics according to the Air Preheated Temperature in a Hybrid/Dual Swirl Jet Combustor)

  • 최인찬;조준익;이기만
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.149-152
    • /
    • 2012
  • The laboratory experiments have been conducted to investigate the effects of air preheated temperature on the emission characteristics by a model gas turbine burner with a hybrid/dual swirl jet flames configuration. The concentration of NOx and CO emissions, and flue gas temperature at combustor exit were measured with varying the equivalence ratio for different air preheated temperatures of 300, 400, 500K at atmospheric pressure. It was overall shown that the NOx and CO emissions, and flue gas temperature were decreased according to the decreasing of equivalence ratio due to the effects of lean premixed combustion regardless of the air preheated temperature. Experimental results of a lean premixed flames configuration indicated that the NOx emission was increased with higher inlet air temperature and air flow rate, which is attributed to the increasing of flue gas temperature and heat release related to the thermal NOx mechanism. But the CO emission was shown the opposite tendency, that is, the CO emission was decreased with increasing of inlet air temperature and flow rate.

  • PDF

플라즈마 화학반응에 의한 연소가스 중 NOx. SOx 동시제거 특성 (Simultaneous Removal Characteristics of NOx, SOx from Combustion Gases using Plasma Chemical Reaction)

  • 박재윤;고용술;이재동;손성도;박상현;고희석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.406-409
    • /
    • 1999
  • Experimental Investigations were carried out to remove NOx, SOx simultaneously from simulated flue gas[NO(0.02%)-SO$_2$(0.08%)-$CO_2$-Air-$N_2$] by using a plasma chemical reaction. Ammonia gas(14.81%) balanced by argon was diluted by all and was Introduced to mall simulated flue gas duct through NH$_3$ Injection system which is in downstream of reactor. The NH$_3$ molecular ratio(MR) was determined based on (NH3) to [NO+S0$_2$]. MR is 1, 1.5, 2.5. The NOx removal rate significantly increased with increasing NaOH bubble quantity. The SO$_2$ removal rate was not significantly effected by applied voltage, however it fairly Increased with increasing NH$_3$ molecule ratio. By-product aerosol particle was observed by XRD(X-ray diffraction) after sampling, The NOx, SOx removal rates, when H2O vapour bubbled by dry all was injected to plasma reactor, were better than those of other cases. When aqueous NaOH solution(20%) bubbled by 2.5( ι /min) of $N_2$ and 0.5 ( ι /min) NH$_3$(MR=1.5) were injected to simulated flue gas, The NOx. SOx removal rate was 95 ~ 100[%]

  • PDF

자트로파 유(Crude Jatropha Oil)에 대한 보일러 직접 연소 특성 (Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler)

  • 강새별;김종진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2934-2939
    • /
    • 2008
  • We conducted a test of a direct burning of crude Jatropha oil (CJO) in a commercial boiler system. The fuel, crude Jatropha oil is not biodiesel which comes from transeterification process of bio oil, but it is pure plant oil. The higher heating value (HHV) of the CJO is 39.3 MJ/kg (9,380 kcal/kg) and is higher than that of a commercial heating oil, 37.9 MJ/kg. The kinematic viscosity of CJO is 36.2 mm2/s at $40^{\circ}C$ and 8.0 mm2/s at $100^{\circ}C$. The burner used in the test is a commercial burner for a commercial heatingoil and its capacity is 140 kW (120,000 kcal/h). We did a preliminary test whether the combustion is stable or not. The preliminary test was a kind of open air combustion test using the commercial burner with crude Jatropha oil. We found that the combustion can be stable if the crude Jatrophaoil temperature is higher than $90^{\circ}C$. We measured the flue gas concentration by using a gas analyzer. The NOx concentration is $80{\sim}100\;ppm$ and CO concentration is nearly 0 ppm at flue gas O2 concentration of 3.0 and 4.5%.

  • PDF

화력발전용 가스재열기의 응력 해석 (Stress Analysis of Gas-Gas Heater in Thermal Power Plant)

  • 황석환;최재승;이후광
    • 한국정밀공학회지
    • /
    • 제19권1호
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

아황산가스가 건조 과정중 잎담배 내용성분에 미치는 영향 (The Effect of $SO_2$ Gas on Chemical Composition of Tobacco Leaves During Flue-curing)

  • 황건중;석영선
    • 한국환경보건학회지
    • /
    • 제11권1호
    • /
    • pp.9-14
    • /
    • 1985
  • This experiment was carried out to study on the effect of SO$_2$ gas to chemical composition of tobacco leaves during flue-curing. The results were as follows: SO$_2$ gas in briquet was the major factor to damage with tobacco leaves. The damage only occured in a presence of moisture in tobacco leaves, it did not occured after color fix'lng stage which is a little leaf moisture. The danger of damage to tobacco leaves lies in 10ppm of SO$_2$ gas concentration. Follow with the SO$_2$ gas concentration increased, sugar and nitrogen contents became higher, polyphenol contents were loss, and the quality of tobacco leaves declined.

  • PDF

플라즈마 방식 열분해 가스화용융시설의 공정별 클로로벤젠 및 클로로페놀 배출거동에 관한 연구 (A Study on the Chlorobenzene and Chlorophenol Behavior in Plasma Type Pyrolysis/Gasfication/Melting Process)

  • 신찬기;신대윤;김기헌;손지환
    • 환경위생공학
    • /
    • 제22권2호
    • /
    • pp.9-20
    • /
    • 2007
  • The incineration process has commonly used for wastes amount reduction and thermal treatments of pollutants as the technologies accumulated. However, the process is getting negative public images owing to matter of hazardous pollutants emission. Specially dioxins became a main issue and were mostly emitted from municipal solid wastes incineration. In this reason, pyrolysis/gasification/melting process is presented as an alternative of incineration process. The pyrolysis/gasification/melting process, a novel technology, is middle of verification of commercial plant and development of technologies in Korea. But the survey about the pollutant emission from the process, and background data in these facilities is necessary. So in this survey, t is investigated that the behavior of chlorobenzenes and chlorophenols in plasma type pyrolysis/gasification/melting plant of pilot scale. We investigated discharging behavior of each phase of chlorobenzene through each process in the plsasma type pyrolysis/gasification/melting process. From this result, it was found that about 99 percent of particle-phase chlorobenzene was removed, but on the other hand gas-phase chlorobenzene was increased by about 600 percent through heat exchanger, flue gas cooling, system and semi dry absorption bag filter(SDA/BF). Also, this investigation presented that di-chlorobenzene(DCB) tri-chlorobenzene(TCB), tetra-chlorobenzene(TeCB), penta-chlorobenzene (PCB), except mono-chlorobenzene(MCB) and hexa-chlorobenzene(HCB) were increased through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). It was investigated that concentration of particle-phase chlorophenol was decreased by about 66 percent, but on the other hand, concentration of gas-phase chlorophenol was increased by about 170 percent through heat exchanger, flue gas cooling system, and semi dry absorption bag filter(SDA/BF). Also, it was found that di-chlorophenol(DCP), tri-chlorophenol(TCP), and penta-chlorophenol(PCP) were increased through the flue gas cooling system, and the semi dry absorption bag filter(SDA/BF). It can be considered that small-scale pilot facility and short investigation period might cause the concentration increase through the flue gas cooling system and the semi dry absorption bag filter(SDA/BF). A further study on real-scale pilot facility and accurate investigation may be required.

이산화탄소 5 ton/day 흡수분리 Pilot Plant 운전 특성 (The Operational Characteristics of CO2 5 ton/day Absorptive Separation Pilot Plant)

  • 오민규;박소진;한근희;이종섭;민병무
    • Korean Chemical Engineering Research
    • /
    • 제50권1호
    • /
    • pp.128-134
    • /
    • 2012
  • 석탄화력 발전소의 연소 배가스를 시간당 1,000 $Nm^3$을 처리할 수 있는 이산화탄소 분리용 pilot plant를 설치하여 화학흡수제인 mono-ethanolamine(MEA)과 2-amino-2-methyl-1-propanol(AMP)를 이용해서 운전특성을 연소 배가스 유량과, 흡수용액 순환유량을 주 실험변수로 분석하였다. MEA 20 wt%를 기준으로 연소 배가스 유량이 100 $m^3/hr$ 감소할수록 이산화탄소 제거율이 평균 6.7% 증가하였으며 흡수용액 순환유량이 1,000 kg/hr 증가에 따라 이산화탄소 제거율은 약 2.8% 상승하였고 $110^{\circ}C$ 재가열기 온도에서 90% 이상의 이산화탄소 제거효율을 나타냈다. MEA가 AMP보다 높은 제거효율을 보였고 MEA(20 wt%) 실험에서 이산화탄소의 제거율이 75.5%인 ASPEN plus의 모사 결과보다 10% 높은 85.5%로 나타났다.

습식 배연탈황 시스템의 효율 향상을 위한 전산해석 (Computational Fluid Dynamic Analysis for Improving the Efficiency of Desulfurization System for the Wet Flue Gas)

  • 황우현;이경옥
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권2호
    • /
    • pp.161-171
    • /
    • 2014
  • 본 논문에서는 CFDRC 사의 상용 CFD 소프트웨어인 CFD-ACE+로 전산유체역학 기법을 적용하여 수치 해석을 수행하여 배연탈황 설비에서 Induced Draft Fan(I.D.Fan) 출구부터 Booster Up Fan(B.U.Fan) 입구까지 난류 유동장과 연소 유동 문제를 모사하여 배기가스 계통 설비의 유동 특성을 해석하였다. 배기가스가 I.D.Fan 출구 ~ B.U.Fan 입구 구간을 적정속도로 균일하게 유동하여 B.U.Fan로 균일하게 유입되도록 하며 압력손실이 적게 발생하도록 설계기준 보일러 부하와 최대연속 정격유량의 보일러 부하에서 이 구간의 안내깃을 검토하였다. 검토한 결과에 대해 CFD 해석을 수행하여 I.D.Fan 출구에서 안내깃을 제거하고 B.U.Fan 입구 전에 안내깃을 보강할 수 있도록 설계를 변경하였다. 배기가스 계통에 변경된 설계를 적용하여 수치모사한 결과에서 배연탈황 설비 내부의 배기가스 압력손실이 줄어들고 유속과 유선이 균일하게 유동할 수 있어 배연탈황 시스템의 효율이 향상한 것을 확인하였다.