• Title/Summary/Keyword: Flow-based

Search Result 11,900, Processing Time 0.037 seconds

Filter- and Denuder-Based Organic Carbon Correction for Positive Sampling Artifacts

  • Hwang, InJo;Na, Kwangsam
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.2
    • /
    • pp.107-113
    • /
    • 2017
  • This study describes (1) the impact of positive sampling artifacts caused by not only a filter-based sampling, but also a denuder-based sampling in the determination of particle-phase organic carbon (POC), (2) the effect of sample flow rate on positive artifacts, and (3) an optimum flow rate that provides a minimized negative sampling artifact for the denuder-based sampling method. To achieve the goals of this study, four different sampling media combinations were employed: (1) Quartz filter-alone (Q-alone), (2) quartz filter behind quartz-fiber filter (QBQ), (3) quartz filter and quartz filter behind Teflon filter (Q-QBT), and (4) quartz filter behind carbon-based denuder (Denuder-Q). The measurement of ambient POC was carried out in an urban area. In addition, to determine gas-phase OC (GOC) removal efficiency of the denuder, a Teflon filter and a quartz filter were deployed upstream and downstream of the denuder, respectively with varying sample flow rates: 5, 10, 20, and 30 LPM. It was found that Q-alone sampling configuration showed a higher POC than QBQ, Q-QBT, and Denuder-Q by 12%, 28%, and 23%, respectively at a sample flow rate of 20 LPM due to no correction for positive artifact caused by adsorption of GOC onto the filter. A lower quantity of GOC was collected from the backup quartz filter on QBQ than that from Q-QBT. This was because GOC was not in equilibrium with that adsorbed on the front quartz filter of QBQ during the sampling period. It is observed that the loss of particle number and mass across the denuder increases with decreasing sample flow rate. The contribution o f positive arti facts to POC decreased with increasing sample flow rate, showing 29%, 25%, and 22% for 10, 20, and 30 LPM, respectively. The 20 LPM turns out to be the optimum sample flow rate for both filter and denuder-based POC sampling.

Survey on the LIC based flow visualization (LIC 기반의 유동 가시화 기법에 대한 조사 연구)

  • Lee, Joong-Youn
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.530-534
    • /
    • 2007
  • Flow visualization is one of visualization techniques and it means a visual expression of vector data using 2D or 3D graphics. It aims for human to easily understand a special feature of the vector data. Flow visualization can be classified into various criterions such as visualization technique, data dimension, type of the flow, and so on. Visualization technique can be categorized into direct method, integration method and derived data based method. Data dimension can be divided into 2D, 2.5D and 3D. Type of flow data may be classified into steady and unsteady. In this paper, various LIC based flow visualization methods will be introduced which is one of representative integration based techniques. Those methods will be categorized with more detailed criterions such as dimension and type of flows.

  • PDF

Development of Educational Web-Based Power Flow Program (교육용 웹 기반 전력조류계산 프로그램 개발)

  • Yang, Kwang-Min;Lee, Ki-Song;Lee, Jeong-Kyu;Park, Jong-Bae;Shin, Joong-Rhin
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.432-434
    • /
    • 2003
  • This paper developed the web based power flow program for education. Since a lot of users can connect and implement the web based program, the only one computer can get much evaluation burden not to compute. Using the XML technology, which supports the distributed computing technology, we have developed the web-based power flow software and system that are distributed the above calculation burden to three computers: web server, database server, application server. Also, this software was developed to get the difference of number of iteration and evaluation speed as veil as the results of state variables for each node according to the each calculation method for power flow using the chart. Therefore, users can get the physical concept of power flow in addition to the difference among the evaluation methods for power flow. We have performed the case studies with IEEE 14 bus system using the developed software.

  • PDF

The observation of permeation grouting method as soil improvement technique with different grout flow models

  • Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.367-374
    • /
    • 2019
  • This study concluded the results of a research on the features of cement based permeation grout, based on some important grout parameters, such as the rheological properties (yield stress and viscosity), coefficient of permeability to grout ($k_G$) and the inject ability of cement grout (N and $N_c$ assessment), which govern the performance of cement based permeation grouting in porous media. Due to the limited knowledge of these important grout parameters and other influencing factors (filtration pressure, rate and time of injection and the grout volume) used in the field work, the application of cement based permeation grouting is still largely a trial and error process in the current practice, especially in the local construction industry. It is seen possible to use simple formulas in order to select the injection parameters and to evaluate their inter-relationship, as well as to optimize injection spacing and times with respect to injection source dimensions and in-situ permeability. The validity of spherical and cylindrical flow model was not verified by any past research works covered in the literature review. Therefore, a theoretical investigation including grout flow models and significant grout parameters for the design of permeation grouting was conducted in this study. This two grout flow models were applied for three grout mixes prepared for w/c=0.75, w/c=1.00 and w/c=1.25 in this study. The relations between injection times, radius, pump pressure and flow rate for both flow models were investigated and the results were presented. Furthermore, in order to investigate these two flow model, some rheological properties of the grout mixes, particle size distribution of the cement used in this study and some geotechnical properties of the sand used in this work were defined and presented.

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Flow Analysis in the Tip Clearance of Axial Flow Rotor Using Finite-Element Large-Eddy Simulation Method (유한요소 LES법에 의한 축류 회전차 팁 틈새의 유동해석)

  • Lee, Myeong-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.686-695
    • /
    • 2009
  • Flow characteristics in linear axial cascade have been studied using large eddy simulation(LES) based on finite element method(FEM) to investigate details of the leakage flow in the tip clearance of axial flow rotor. STAR-CD(FVM) and PAT-Flow(FEM) have been adopted to solve the Navier-Stokes equations for the simulation of the unsteady turbulent flow. Numerical results from the present study have been compared with the existing experimental results to investigate a tip clearance effect on velocity profile and static pressure distribution on blade surface at various spanwise positions. Both simulation results agree well with the experimental data. However, it has been shown that the results of finite-element large-eddy simulation agree better with experimental data than $k-{\varepsilon}$ turbulent model based on finite volume method regarding the tip vortex geometry and static pressure distribution at the center of the tip vortex core. As a result of this study, it is shown that finite-element large-eddy simulation method can predict more exactly on the tip leakage vortex flow and behind flow field.

Identification of Two-Phase Flow Patterns Based on Statistical Characteristics of Differential Pressure Fluctuations (차압교란치의 통계적 특성에 의한 2상유동양식의 판별)

  • 이상천;이정표;김중엽
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1290-1299
    • /
    • 1990
  • Characteristics of flow patterns in horizontal gas-liquid two-phase flow for two different sizes of pipe were investigated based upon a statistical analysis of differential pressure fluctuations at an orifice. The probability density function and the power spectral density function of the traces indicate peculiar shapes depending upon the two-phase flow regime. Mixed and separated flows also could be identified by the autocorrelation function. The transition region from separated flow to mixed flow also could be identified by these statistical properties. The experimental data determined by this method were compared with the flow pattern maps suggested by other investigators. The result indicates that the statistical characteristics of differential pressure fluctuations at orifices may be a useful tool for identifying flow patterns of horizontal gas-liquid two-phase flow.

Efficient Flow Table Management Scheme in SDN-Based Cloud Computing Networks

  • Ha, Nambong;Kim, Namgi
    • Journal of Information Processing Systems
    • /
    • v.14 no.1
    • /
    • pp.228-238
    • /
    • 2018
  • With the rapid advancement of Internet services, there has been a dramatic increase in services that dynamically provide Internet resources on demand, such as cloud computing. In a cloud computing service, because the number of users in the cloud is changing dynamically, it is more efficient to utilize a flexible network technology such as software-defined networking (SDN). However, to efficiently support the SDN-based cloud computing service with limited resources, it is important to effectively manage the flow table at the SDN switch. Therefore, in this paper, a new flow management scheme is proposed that is able to, through efficient management, speed up the flow-entry search speed and simultaneously maximize the number of flow entries. The proposed scheme maximizes the capacity of the flow table by efficiently storing flow entry information while quickly executing the operation of flow-entry search by employing a hash index. In this paper, the proposed scheme is implemented by modifying the actual software SDN switch and then, its performance is analyzed. The results of the analysis show that the proposed scheme, by managing the flow tables efficiently, can support more flow entries.

Development of Incompressible flow solver based on unstructured FVM (비정렬 유한체적법을 이용한 비압축성 유동해석 코드 개발)

  • Kim Jong-Tae;Kim Yong-Mo;Maeng Joo-Sung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.33-39
    • /
    • 1996
  • An incompressible flow stover based on the unstructured finite volume method has been developed. The flow domain is discretized by triangles in 2D or tetrahedra in 3D. The convective and viscous fluxes are obtained using edge connectivities of the unstructured meshes. The pressure-velocity coupling is handled by the artificial compressibility algorithm due to its computational efficiency associated with the hyperbolic nature of the resulting equations. Laminar test flow problems are computed and presented with a comparison against other numerical solutions or experimental results.

  • PDF