• Title/Summary/Keyword: Flow state

Search Result 3,197, Processing Time 0.034 seconds

Training an Artificial Neural Network for Estimating the Power Flow State

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.275-280
    • /
    • 2005
  • The principal context of this research is the approach to an artificial neural network algorithm which solves multivariable nonlinear equation systems by estimating the state of line power flow. First a dynamical neural network with feedback is used to find the minimum value of the objective function at each iteration of the state estimator algorithm. In second step a two-layer neural network structures is derived to implement all of the different matrix-vector products that arise in neural network state estimator analysis. For hardware requirements, as they relate to the total number of internal connections, the architecture developed here preserves in its structure the pronounced sparsity of power networks for which state the estimator analysis is to be carried out. A principal feature of the architecture is that the computing time overheads in solution are independent of the dimensions or structure of the equation system. It is here where the ultrahigh-speed of massively parallel computing in neural networks can offer major practical benefit.

  • PDF

Determining the flow curves for an inverse ferrofluid

  • Ekwebelam, C.C.;See, H.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • An inverse ferrofluid composed of micron sized polymethylmethacrylate particles dispersed in ferrofluid was used to investigate the effects of test duration times on determining the flow curves of these materials under constant magnetic field. The results showed that flow curves determined using low duration times were most likely not measuring the steady state rheological response. However, at longer duration times, which are expected to correspond more to steady state behaviour, we noticed the occurrence of plateau and decreasing flow curves in the shear rate range of $0.004\;s^{-1}$ to ${\sim}20\;s^{-1}$, which suggest the presence of nonhomogeneities and shear localization in the material. This behaviour was also reflected in the steady state results from shear start up tests performed over the same range of shear rates. The results indicate that care is required when interpreting flow curves obtained for inverse ferrofluids.

Resilient Reduced-State Resource Reservation

  • Csaszar Andras;Takacs Attila;Szabo Robert;Henk Tamas
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.509-524
    • /
    • 2005
  • Due to the strict requirements of emerging applications, per-flow admission control is gaining increasing importance. One way to implement per-flow admission control is using an on­path resource reservation protocol, where the admission decision is made hop-by-hop after a new flow request arrives at the network boundary. The next-steps in signaling (NSIS) working group of the Internet engineering task force (IETF) is standardising such an on-path signaling protocol. One of the reservation methods considered by NSIS is reduced-state mode, which, suiting the differentiated service (DiffServ) concept, only allows per-class states in interior nodes of a domain. Although there are clear benefits of not dealing with per-flow states in interior nodes-like scalability and low complexity-, without per-flow states the handling of re-routed flows, e.g., after a failure, is a demanding and highly non-trivial task. To be applied in carrier-grade networks, the protocol needs to be resilient in this situation. In this article, we will explain the consequences of a route failover to resource reservation protocols: Severe congestion and incorrect admission decisions due to outdated reservation states. We will set requirements that handling solutions need to fulfill, and we propose extensions to reduced-state protocols accordingly. We show with a set of simulated scenarios that with the given solutions reduced-state protocols can handle re-routed flows practically as fast and robust as stateful protocols.

Code development and preliminary validation for lead-cooled fast reactor thermal-hydraulic transient behavior

  • Chenglong Wang;Chen Wang;Wenxi Tian;Guanghui Su;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2332-2342
    • /
    • 2024
  • Lead-cooled fast reactors (LFRs) have a wide range of application scenarios, which require the thermal-hydraulic characteristics of LFRs to be reliable. In the present paper, the Lead-cooled fast reactor Thermal-Hydraulic Analysis Code LETHAC was developed, including the models of pipe, heat exchanger, and pool. To verify the correctness of LETHAC, two experimental facilities and three experimental cases were selected, including GFT and PLOFA tests for NACIE-UP and Test-1 for CIRCE. The calculated results show the same and consistent trend with the experimental data, but there are some discrepancies. It can be found that LETHAC is suitable and reliable in predicting the transient behavior of lead-cooled system.

Numerical simulation of three-dimensional flow and heat transfer characteristics of liquid lead-bismuth

  • He, Shaopeng;Wang, Mingjun;Zhang, Jing;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1834-1845
    • /
    • 2021
  • Liquid lead-bismuth cooled fast reactor is one of the most promising reactor types among the fourth-generation nuclear energy systems. The flow and heat transfer characteristics of lead-bismuth eutectic (LBE) are completely different from ordinary fluids due to its special thermal properties, causing that the traditional Reynolds analogy is no longer recommended and appropriate. More accurate turbulence flow and heat transfer model for the liquid metal lead-bismuth should be developed and applied in CFD simulation. In this paper, a specific CFD solver for simulating the flow and heat transfer of liquid lead-bismuth based on the k - 𝜀 - k𝜃 - 𝜀𝜃 model was developed based on the open source platform OpenFOAM. Then the advantage of proposed model was demonstrated and validated against a set of experimental data. Finally, the simulation of LBE turbulent flow and heat transfer in a 7-pin wire-wrapped rod bundle with the k - 𝜀 - k𝜃 - 𝜀𝜃 model was carried out. The influence of wire on the flow and heat transfer characteristics and the three-dimensional distribution of key thermal hydraulic parameters such as temperature, cross-flow velocity and Nusselt number were studied and presented. Compared with the traditional SED model with a constant Prt = 1.5 or 2.0, the k - 𝜀 - k𝜃 - 𝜀𝜃 model is more accurate on predicting the turbulence flow and heat transfer of liquid lead-bismuth. The average relative error of the k - 𝜀 - k𝜃 - 𝜀𝜃 model is reduced by 11.1% at most under the simulation conditions in this paper. This work is meaningful for the thermal hydraulic analysis and structure design of fuel assembly in the liquid lead-bismuth cooled fast reactor.

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

Experimental Study of Natural Convection from a Slightly Inclined Cylinder with Uniform Heat Flux Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 약간 경사진 균일 열유속 원기등에 의한 자연대류의 실험적 연구)

  • 유갑종;추홍록;장우석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1799-1807
    • /
    • 1994
  • Natural convection from a slightly inclined circular cylinders immersed in quiescent cold pure water was studied experimentally. The experiment was carried out for circular cylinders with uniform heat flux ranging from $100W/m^{2} to 800 W/m^{2}$ and inclined angle ranging from horizontal $({\phi}=0^{\circ}) to 15^{\circ}$. The flow fields around cylinder were visualized and heat transfer characteristics investigated by measuring the surface temperatures for each case. As the results, it is shown that flow patterns are changed consecutively through the sequence of steady state downflow, unsteady state flow and steady state upflow with increasing heat flux. At the same inclined angle, as heat flux increases, the average Nusselt number decreases and then increases. At the same heat flux, as inclined angle increases, the average Nusselt number decreases.

An Asymptotic Analysis on the Inviscid Plane Stagnation-flow Solidification Problem (비점성 평면 정체 유동 응고 문제에 대한 점근적 해석)

  • Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.6
    • /
    • pp.792-801
    • /
    • 2000
  • The problem of phase change from liquid to solid in the inviscid plane-stagnation flow is theoretically investigated. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The transient solution is dependent on the three dimensionless parameters, but the equilibrium state is determined by one parameter of (temperature ratio/conductivity ratio). The effect of the fluid flow on the growth rate of the solid in the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state. The characteristics of the transient heat transfer at the surface of the solid and the liquid side of the solid-liquid interface for all the dimensionless parameters are elucidated.

Enhanced Virus Removal by Flocculation and Microfiltration

  • Han Binbing;Carlson Jonathan O.;Powers Scott M.;Wickramasinghe S. Ranil
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.1
    • /
    • pp.6-9
    • /
    • 2002
  • In this work we have investigated the feasibility of virus clearance by flocculation and tangential flow microfiltration. Chinese hamster ovary cell feed streams were spiked with minute virus of mice and then flocculated using cationic polyelectrolytes prior to tangential flow microfiltration. Our results indicate that flocculation prior to microfiltration leads to more than 100 fold clearance of minute virus of mice particles in the permeate. Today, validation of virus clearance is a major concern in the manufacture of biopharmaceutical products. Frequently new unit operations are added simply to validate virus clearance thus increasing the manufacturing cost. The results obtained here suggest that virus clearance can be obtained during tangential flow microfiltration. Since tangential flow microfiltration is frequently used for bioreactor harvesting this could be a low cost method to validate virus clearance.

A theoretical analysis on the inviscid stagnation-flow solidification problem (비점성 정체 유동 응고 문제에 대한 이론적 해석)

  • 유주식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2000
  • This study investigates the problem of phase change from liquid to solid in the inviscid stagnation flow. The solution of dimensionless governing equations is determined by the three dimensionless parameters of (temperature ratio/conductivity ratio), Stefan number, and diffusi-vity ratio. The solution at the initial stage of freezing is obtained by expanding it in powers of time, and the final equilibrium state is determined from the steady-state governing equations. The equilibrium state is dependent on (temperature ratio/conductivity ratio), but is independent of Stefan number and diffusivity ratio. The effect of fluid flow on the pure conduction problem can be clearly seen from the solution of the initial stage and the final equilibrium state, and the characteristics of the solidification process for all the dimensionless parameters are elucidated.

  • PDF