DOI QR코드

DOI QR Code

Code development and preliminary validation for lead-cooled fast reactor thermal-hydraulic transient behavior

  • Chenglong Wang (Department of Nuclear Science and Technology, State Key Lab. of Multiphase Flow in Power Engineering, Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Chen Wang (Department of Nuclear Science and Technology, State Key Lab. of Multiphase Flow in Power Engineering, Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Wenxi Tian (Department of Nuclear Science and Technology, State Key Lab. of Multiphase Flow in Power Engineering, Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Guanghui Su (Department of Nuclear Science and Technology, State Key Lab. of Multiphase Flow in Power Engineering, Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University) ;
  • Suizheng Qiu (Department of Nuclear Science and Technology, State Key Lab. of Multiphase Flow in Power Engineering, Shaanxi Key Lab. of Advanced Nuclear Energy and Technology, Xi'an Jiaotong University)
  • Received : 2023.04.10
  • Accepted : 2024.01.28
  • Published : 2024.06.25

Abstract

Lead-cooled fast reactors (LFRs) have a wide range of application scenarios, which require the thermal-hydraulic characteristics of LFRs to be reliable. In the present paper, the Lead-cooled fast reactor Thermal-Hydraulic Analysis Code LETHAC was developed, including the models of pipe, heat exchanger, and pool. To verify the correctness of LETHAC, two experimental facilities and three experimental cases were selected, including GFT and PLOFA tests for NACIE-UP and Test-1 for CIRCE. The calculated results show the same and consistent trend with the experimental data, but there are some discrepancies. It can be found that LETHAC is suitable and reliable in predicting the transient behavior of lead-cooled system.

Keywords

Acknowledgement

The authors would like to thank the support from Innovative Scientific Program of CNNC.

References

  1. P. Lorusso, S. Bassini, A. Del Nevo, et al., GEN-IV LFR development: status & perspectives, Prog. Nucl. Energy 105 (2018) 318-331. https://doi.org/10.1016/j.pnucene.2018.02.005
  2. M. Tarantino, D. Martelli, G. Barone, et al., Mixed convection and stratification phenomena in a heavy liquid metal pool, Nucl. Eng. Des. 286 (2015) 261-277. https://doi.org/10.1016/j.nucengdes.2015.02.012
  3. G. Coccoluto, P. Gaggini, V. Labanti, et al., Heavy liquid metal natural circulation in a one-dimensional loop, Nucl. Eng. Des. 241 (5) (2011) 1301-1309. https://doi.org/10.1016/j.nucengdes.2010.06.048
  4. M. Tarantino, S.D. Grandis, G. Benamati, et al., Natural circulation in a liquid metal one-dimensional loop, J. Nucl. Mater. 376 (3) (2008) 409-414. https://doi.org/10.1016/j.jnucmat.2008.02.080
  5. Weimin Ma, Evaldas Bubelis, Aram Karbojian, Bal Raj Sehgal, Coddington Paul, Transient experiments from the thermal-hydraulic ADS lead bismuth loop (TALL) and comparative TRAC/AAA analysis, Nucl. Eng. Des. 236 (13) (2006).
  6. M. Yan, H. Sekimoto, Safety analysis of small long-life CANDLE fast reactor, Ann. Nucl. Energy 35 (5) (2008) 813-828. https://doi.org/10.1016/j.anucene.2007.09.009
  7. C. Guo, D. Lu, X. Zhang, et al., Development and application of a safety analysis code for small Lead cooled Fast Reactor SVBR 75/100, Ann. Nucl. Energy 81 (jul) (2015) 62-72. https://doi.org/10.1016/j.anucene.2015.03.021
  8. A. Moisseytsev, J. Sienicki, Transient accident analysis of a supercritical carbon dioxide Brayton cycle energy converter coupled to an autonomous lead-cooled fast reactor, Nucl. Eng. Des. 238 (8) (2008) 2094-2105. https://doi.org/10.1016/j.nucengdes.2007.11.012
  9. V. Narcisi, F. Giannetti, G. Caruso, Investigation on RELAP5-3D© capability to predict thermal stratification in liquid metal pool-type system and comparison with experimental data, Nucl. Eng. Des. 352 (2019) 110152.
  10. S.K. Chen, Y.M. Chen, N.E. Todreas, The upgraded Cheng and Todreas correlation for pressure drop in hexagonal wire-wrapped rod bundles, Nucl. Eng. Des. 335 (2018) 356-373. https://doi.org/10.1016/j.nucengdes.2018.05.010
  11. E.H. Novendstern, Turbulent flow pressure drop model for fuel rod assemblies utilizing a helical wire-wrap spacer system, Nucl. Eng. Des. 22 (1) (1972) 28-42. https://doi.org/10.1016/0029-5493(72)90059-3
  12. K. Rehme, Pressure drop correlations for fuel element spacers, Nucl. Technol. 17 (1) (1973) 15-23. https://doi.org/10.13182/NT73-A31250
  13. S. Wei, W. Ma, C. Wang, et al., Development and validation of transient thermal-hydraulic evaluation code for a lead-based fast reactor, Int. J. Energy Res. (2021) 1-19.
  14. E.H. Novendstern, Turbulent flow pressure drop model for fuel rod assemblies utilizing a helical wire-wrap spacer system, Nucl. Eng. Des. 22 (1) (1972) 28-42. https://doi.org/10.1016/0029-5493(72)90059-3
  15. K. Shure, Fission Product Decay Energy. WAPD-BT-24, 1961, p. 1.
  16. C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equation, Prentice-Hall, Englewood Cliffs, NJ, 1971.
  17. D. Rozzia, G. Fasano, I.D. Piazza, et al., Experimental investigation on powder conductivity for the application to double wall heat exchanger (NACIE-UP), Nucl. Eng. Des. 283 (mar) (2015) 100-113. https://doi.org/10.1016/j.nucengdes.2014.06.037
  18. I. Di Piazza, M. Angelucci, R. Marinari, M. Tarantino, D. Martelli, Thermo-fluid dynamic transients in the NACIE-UP facility, Nucl. Eng. Des. (2019) 352.
  19. Morena Angelucci, Ivan Di Piazza, Daniele Martelli, Experimental campaign on the HLM loop NACIE-UP with instrumented wire-spaced fuel pin simulator, Nucl. Eng. Des. (2018) 332.
  20. M. Tarantino, P. Agostini, G. Benamati, et al., Integral Circulation Experiment: thermal-hydraulic simulator of a heavy liquid metal reactor, J. Nucl. Mater. 415 (3) (2011) 433-448. https://doi.org/10.1016/j.jnucmat.2011.04.033