• Title/Summary/Keyword: Flow regulation

Search Result 556, Processing Time 0.025 seconds

A Study on Blasting Method for the Smallest of the Scour Depth after Pier Construction (교각의 세굴심도 최소화를 위한 발파공법 연구)

  • 김가현;김종주;안명석
    • Explosives and Blasting
    • /
    • v.21 no.3
    • /
    • pp.23-35
    • /
    • 2003
  • An analytical diffusion model for flood routing with backwater effects and lateral flows is developed. The basic diffusion equation is linearized about an average depth of (H + h), and is solved using the boundary conditons which take into account the effects of backwater and lateral flows. Scouring phenomenon around pier which affects on the support function of pier and the stabilization if river bed is a complex problem depending on flow properties and river bed state as well as pier geometry. therefore, there is no uniting theory at present which would enable the designer to estimate, with confidence, the depth of scour at bridge piers. The various methods used in erosion control are collectively called upstream engineering, HEC-RAS Model, underwater blasting. They consist of reforestation, check-dam construction, planting of burned-over areas, contour plowing and regulation of crop and grazing practices. Also included are measures for proper treatment of high embankments and cuts and stabilization of streambanks by planting or by revetment construction. One phase of reforestation that may be applied near a reservoir is planting of vegetation screens. Such screens, planted on the flats adjacent to the normal stream channel at the head of a reservoir, reduce the velocity of silt-laden storm inflows that inundate these areas. This stilling action causes extensive deposition to occur before the silt reaches the main cavity of the reservoir.

Knockdown of HMGN5 Expression by RNA Interference Induces Cell Cycle Arrest in Human Lung Cancer Cells

  • Chen, Peng;Wang, Xiu-Li;Ma, Zhong-Sen;Xu, Zhong;Jia, Bo;Ren, Jin;Hu, Yu-Xin;Zhang, Qing-Hua;Ma, Tian-Gang;Yan, Bing-Di;Yan, Qing-Zhu;Li, Yan-Lei;Li, Zhen;Yu, Jin-Yan;Gao, Rong;Fan, Na;Li, Bo;Yang, Jun-Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3223-3228
    • /
    • 2012
  • HMGN5 is a typical member of the HMGN (high mobility group nucleosome-binding protein) family which may function as a nucleosomal binding and transcriptional activating protein. Overexpression of HMGN5 has been observed in several human tumors but its role in tumorigenesis has not been fully clarified. To investigate its significance for human lung cancer progression, we successfully constructed a shRNA expression lentiviral vector in which sense and antisense sequences targeting the human HMGN5 were linked with a 9-nucleotide loop. Inhibitory effects of siRNA on endogenous HMGN5 gene expression and protein synthesis were demonstrated via real-time RT-PCR and western blotting. We found HMGN5 silencing to significantly inhibit A549 and H1299 cell proliferation assessed by MTT, BrdU incorporation and colony formation assays. Furthermore, flow cytometry analysis showed that specific knockdown of HMGN5 slowed down the cell cycle at the G0/G1 phase and decreased the populations of A549 and H1299 cells at the S and G2/M phases. Taken together, these results suggest that HMGN5 is directly involved in regulation cell proliferation in A549 and H1299 cells by influencing signaling pathways involved in cell cycle progression. Thus, our finding suggests that targeting HMGN5 may be an effective strategy for human lung cancer treatment.

Differential Distribution of miR-20a and miR-20b may Underly Metastatic Heterogeneity of Breast Cancers

  • Li, Jian-Yi;Zhang, Yang;Zhang, Wen-Hai;Jia, Shi;Kang, Ye;Zhu, Xiao-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1901-1906
    • /
    • 2012
  • Background: The discovery that microRNA (miRNA) regulates metastasis provide a principal molecular basis for tumor heterogeneity. A characteristic of solid tumors is their heterogenous distribution of blood vessels, with significant hypoxia occurring in regions (centers of tumor) of low blood flow. It is necessary to discover the mechanism of breast cancer metastasis in relation to the fact that there is a differential distribution of crucial microRNA in tumors from centers to edges. Methods: Breast tissues from 48 patients (32 patients with breast cancer) were classified into the high invasive and metastatic group (HIMG), low invasive and metastatic group (LIMG), and normal group. Samples were collected from both the centers and edges of all tumors. The first six specimens were detected by microRNA array, and the second ten specimens were detected by real-time qRT-PCR and Western blot analyses. Correlation analysis was performed between the miRNAs and target proteins. Results: The relative content of miR-20a and miR-20b was lower in the center of the tumor than at the edge in the LIMG, lower at the edge of the tumor than in the center in the HIMG, and lower in breast cancer tissues than in normal tissues. VEGF-A and HIF-1alpha mRNA levels were higher in the HIMG than in the LIMG, and levels were higher in both groups than in the normal group; there was no difference in mRNA levels between the edge and center of the tumor. VEGF-A and HIF-1alpha protein levels were higher in the HIMG than in the LIMG, and protein levels in both groups were higher than in the normal group; there was a significant difference in protein expression between the edge and center of the tumor. Correlation analysis showed that the key miRNAs (miR-20a and miR-20b) negatively correlated with the target proteins (VEGF-A and HIF-1alpha). Conclusions: Our data suggest that miR-20a and miR-20b are differentially distributed in breast cancer, while VEGF-A and HIF-1alpha mRNA had coincident distributions, and VEGF-A and HIF-1alpha proteins had uneven and opposing distributions to the miRNAs. It appears that one of the most important facets underlying metastatic heterogeneity is the differential distribution of miR-20a and miR-20b and their regulation of target proteins.

Beta-asarone Induces LoVo Colon Cancer Cell Apoptosis by Up-regulation of Caspases through a Mitochondrial Pathway in vitro and in vivo

  • Zou, Xi;Liu, Shen-Lin;Zhou, Jin-Yong;Wu, Jian;Ling, Bo-Fan;Wang, Rui-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5291-5298
    • /
    • 2012
  • Beta-asarone is one of the main bioactive constituents in traditional Chinese medicine Acorus calamu. Previous studies have shown that it has antifungal and anthelmintic activities. However, little is known about its anticancer effects. This study aimed to determine inhibitory effects on LoVo colon cancer cell proliferation and to clarify the underlying mechanisms in vitro and in vivo. Dose-response and time-course anti-proliferation effects were examined by MTT assay. Our results demonstrated that LoVo cell viability showed dose- and time-dependence on ${\beta}$-asarone. We further assessed anti-proliferation effects as ${\beta}$-asarone-induced apoptosis by annexin V-fluorescein isothiocyanate/propidium iodide assay usinga flow cytometer and observed characteristic nuclear fragmentation and chromatin condensation of apoptosis by microscopy. Moreover, we found the apoptosis to be induced through the mitochondrial/caspase pathway by decreasing mitochondrial membrane potential (MMP) and reducing the Bcl-2-to-Bax ratio, in addition to activating the caspase-9 and caspase-3 cascades. Additionally, the apoptosis could be inhibited by a pan-caspase inhibitor, carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK). When nude mice bearing LoVo tumor xenografts were treated with ${\beta}$-asarone, tumor volumes were reduced and terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL) assays of excised tissue also demonstrated apoptotic changes. Taken together, these findings for the first time provide evidence that ${\beta}$-asarone can suppress the growth of colon cancer and the induced apoptosis is possibly mediated through mitochondria/caspase pathways.

Methyl Donor Status Influences DNMT Expression and Global DNA Methylation in Cervical Cancer Cells

  • Poomipark, Natwadee;Flatley, Janet E;Hill, Marilyn H;Mangnall, Barbara;Azar, Elnaz;Grabowski, Peter;Powers, Hilary J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3213-3222
    • /
    • 2016
  • Background: Methyl donor status influences DNA stability and DNA methylation although little is known about effects on DNA methyltransferases. The aim of this study was to determine whether methyl-donor status influences DNA methyltransferase (Dnmt) gene expression in cervical cancer cells, and if so, whether there are associated effects on global DNA methylation. Materials and Methods: The human cervical cancer cell line, C4-II, was grown in complete medium and medium depleted of folate (F-M+) and folate and methionine (F-M-). Growth rate, intracellular folate, intracellular methionine and homocysteine in the extracellular medium were measured to validate the cancer cell model of methyl donor depletion. Dnmt expression was measured by qRT-PCR using relative quantification and global DNA methylation was measured using a flow cytometric method. Results: Intracellular folate and methionine concentrations were significantly reduced after growth in depleted media. Growth rate was also reduced in response to methyl donor depletion. Extracellular homocysteine was raised compared with controls, indicating disturbance to the methyl cycle. Combined folate and methionine depletion led to a significant down-regulation of Dnmt3a and Dnmt3b; this was associated with an 18% reduction in global DNA methylation compared with controls. Effects of folate and methionine depletion on Dnmt3a and 3b expression were reversed by transferring depleted cells to complete medium. Conclusions: Methyl donor status can evidently influence expression of Dnmts in cervical cancer cells, which is associated with DNA global hypomethylation. Effects on Dnmt expression are reversible, suggesting reversible modulating effects of dietary methyl donor intake on gene expression, which may be relevant for cancer progression.

MiR-26a promotes apoptosis of porcine granulosa cells by targeting the 3β-hydroxysteroid-Δ24-reductase gene

  • Zhang, Xiaodong;Tao, Qiangqiang;Shang, Jinnan;Xu, Yiliang;Zhang, Liang;Ma, Yingchun;Zhu, Weihua;Yang, Min;Ding, Yueyun;Yin, Zongjun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.547-555
    • /
    • 2020
  • Objective: Apoptosis of ovarian granulosa cells (GCs) affects mammalian follicular development and fecundity. This study aimed to explore the regulatory relationship between microRNA-26a (miR-26a) and the 3β-hydroxysteroid-Δ24-reductase gene (DHCR24) gene in porcine follicular granular cells (pGCs), and to provide empirical data for the development of methods to improve the reproductive capacity of pigs. Methods: The pGCs were transfected with miR-26a mimic, miR-26a inhibitor and DHCR24-siRNA in vitro. The cell apoptosis rate of pGCs was detected by the flow cytometry. The secretion levels of estradiol (E2) and progesterone (P) in pGCs were detected by enzyme-linked immunosorbent assay. Double luciferase validation system was used to detect the binding sites between miR-26a and DHCR24 3'-UTR region. Qualitative real-time polymerase chain reaction and Western blotting were used to verify the DHCR24 mRNA and protein expression in pGCs, respectively, after transfecting with miR-26a mimic and miR-26a inhibitor. Results: Results showed that enhancement of miR-26a promoted apoptosis, and inhibited E2 and P secretion in pGCs. Meanwhile, inhibition of DHCR24 also upregulated the Caspase-3 expression, reduced the BCL-2 expression, promoted pGCs apoptosis, and inhibited E2 and P secretion in pGCs. There were the binding sites of miR-26a located within DHCR24 3'-UTR. Up-regulation of miR-26a inhibited DHCR24 mRNA and protein expression in pGCs. Conclusion: This study demonstrates that miR-26a can promote cell apoptosis and inhibit E2 and P secretion by inhibiting the expression of DHCR24 in pGCs.

Ebb-and-Flow of Macroautophagy and Chaperone-Mediated Autophagy in Raji Cells Induced by Starvation and Arsenic Trioxide

  • Li, Cai-Li;Wei, Hu-Lai;Chen, Jing;Wang, Bei;Xie, Bei;Fan, Lin-Lan;Li, Lin-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5715-5719
    • /
    • 2014
  • Autophagy is crucial in the maintenance of homeostasis and regenerated energy of mammalian cells. Macroautophagy and chaperone-mediated autophagy(CMA) are the two best-identified pathways. Recent research has found that in normal cells, decline of macroautophagy is appropriately parallel with activation of CMA. However, whether it is also true in cancer cells has been poorly studied. Here we focused on cross-talk and conversion between macroautophagy and CMA in cultured Burkitt lymphoma Raji cells when facing serum deprivation and exposure to a toxic compound, arsenic trioxide. The results showed that both macroautophagy and CMA were activated sequentially instead of simultaneously in starvation-induced Raji cells, and macroautophagy was quickly activated and peaked during the first hours of nutrition deprivation, and then gradually decreased to near baseline. With nutrient deprivation persisted, CMA progressively increased along with the decline of macroautophagy. On the other hand, in arsenic trioxide-treated Raji cells, macroautophagy activity was also significantly increased, but CMA activity was not rapidly enhanced until macroautophagy was inhibited by 3-methyladenine, an inhibitor. Together, we conclude that cancer cells exhibit differential responses to diverse stressor-induced damage by autophagy. The sequential switch of the first-aider macroautophagy to the homeostasis-stabilizer CMA, whether active or passive, might be conducive to the adaption of cancer cells to miscellaneous intracellular or extracellular stressors. These findings must be helpful to understand the characteristics, compensatory mechanisms and answer modes of different autophagic pathways in cancer cells, which might be very important and promising to the development of potential targeting interventions for cancer therapies via regulation of autophagic pathways.

Effects of Argon-plasma Jet on the Cytoskeleton of Fibroblasts: Implications of a New Approach for Cancer Therapy (Fibroblasts 세포주의 세포골격에서 아르곤 플라즈마의 효과: Cancer Therapy의 새로운 접근방법)

  • Han, Ji-Hye;Nam, Min-Kyung;Kim, Yong-Hee;Park, Dae-Wook;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.308-312
    • /
    • 2012
  • Argon-plasma jet (Ar-PJ) is generated by ionizing Ar gas, and the resulting Ar-PJ consists of a mixture of neutral particles, positive ions, negative electrons, and various reactive species. Although Ar-PJ has been used in various biomedical applications, little is known about the biological effects on cells located near the plasma-exposed region. Here, we investigated the effects of the Ar-PJ on actin cytoskeleton of mouse embryonic fibroblasts (MEFs) in response to indirect as well as direct exposure to Ar-PJ. This Ar-PJ was generated at 500 mL/min of flow rate and 100 V electric power by our device mainly consisting of electrodes, dielectrics, and a high-voltage power supply. Because actin cytoskeleton is the key cellular machinery involved in cellular movement and is implicated in regulation of cancer metastasis and thus resulting in a highly desirable cancer therapeutic target, we examined the actin filament architectures in Ar-PJ-treated MEFs by staining with an actin-specific phalloidin labeled with fluorescent dye. Interestingly, the Ar-PJ treatment causes destabilization of actin filament architectures in the regions indirectly exposed to Ar-PJ, but no differences in MEFs treated with Ar gas alone and in untreated cell control, indicating that this phenomenon is a specific cellular response against Ar-PJ in the live cells, which are indirectly exposed to Ar-PJ. Collectively, our study raises the possibility that Ar-PJ may have potential as anti-cancer drug effect through direct destabilization of the actin cytoskeleton.

Neuroprotective effects of Rg3-enriched Korean Red Ginseng on alcohol-induced apoptosis in PC12 Cells (PC12 세포에서 알코올 유발성 세포 사멸에 대한 Rg3 풍부 고려 홍삼의 신경세포 보호 효과)

  • Choi, Na-Eun;Ryu, Jin-Hyeob;Lee, Dong-Ha;Cho, Hyun-Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.521-528
    • /
    • 2017
  • Excessive alcohol consumption is one of the leading causes of many neurological diseases, such as dementia and Alzheimer's disease, and many efforts are under way to solve them. Red ginseng is known to enhance neuronal survival, inhibit apoptosis, and promote nerve regeneration of nerve cells. This study examined whether Rg3-enriched Korean red ginseng extract (KRG) inhibits the apoptosis of PC12 cells caused by alcohol-induced neurotoxicity and how KRG regulates several factors related to the caspase mediated pathway. In this way, the cell survival rate and apoptosis rate of PC12 cells were measured using an EZ-Cytox cell viability assay kit and flow cytometry, respectively. The expression of the apoptosis-related proteins (Bcl-2, Bid, Bax and caspase-3) were analyzed by western blotting, and the significance of the measured results was confirmed using the ANOVA method. As a result, KRG increased the expression of Bcl-2; inhibited the expression of Bid, Bax, and caspase-3; and inhibited the apoptosis of alcohol-induced PC12 cells. These results mean that the KRG-induced increase in Bcl-2 expression and down-regulation of Bid and Bax expression down-regulate caspase-3 expression, which in turn inhibits the mitochondrial apoptotic pathways. This study suggests that KRG is worth developing as a neuroprotective agent candidate.

Efficient Gene Delivery into Hematopoietic Stem Cells by Intra-Bone Marrow Injection of Retrovirus (IBM 이식을 통한 골수 조혈 줄기 세포에의 효과적인 유전자 도입)

  • Lee, Byun-Joo;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Kim, Jae-Hwan;Park, Jin-Ki;Chung, Hak-Jae;Chang, Won-Kyong;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Efficient gene transfer into hematopoietic stem cells is a great tool for gene therapy of hematopoietic disease. Retrovirus have been extensively used for gene delivery and gene therapy. However, current in vitro gene transfer has some obstacles suck as induction of differentiation loss of self-renewal capacity, and down-regulation of homing efficiency for in vitro hematopoietic stem cells transplantation. To overcome these problems, we developed efficient in vitro retroviral transfer technique by direct intra-bone marrow injection (IBM). We identified effective retrovirus gene transfer in bone marrow hematopoietic cells in vitro. Two weeks after retrovirus transfer via IBM injection, we observed stable EGFP gene expression in bone marrow, lymph node, spleen, and liver cells. In addition, $6.4{\pm}2.7%$ of hematopoietic stem/progenitor cells were expressed EGFP transgene from flow cytometry analysis. Our results demonstrate that in vitro retrovirus gene transfer via IBM injection can provide a viable alternative to current or moo gene transfer approach.