Pipe network analysis is analyze all of it about pressure and volume flow rate through that are pipeline, junction, regulator and valve etc. In this study is compare TVD with MOC method for analysis of unsteady compressible flow in pipelines. Then, we calculated unsteady compressible flow for pipe network that periodic volume flow rate conditions.
Two-phase flow may almost exist in every branch of the energy industry. For the corresponding engineering design, it is very essential and crucial to monitor flow patterns and their transitions accurately. With the high-speed development and success of deep learning based on convolutional neural network (CNN), the study of flow pattern identification recently almost focused on this methodology. Additionally, the photographing technique has attractive implementation features as well, since it is normally considerably less expensive than other techniques. The development of such a two-phase flow pattern online monitoring system is the objective of this work, which seldom studied before. The ongoing preliminary engineering design (including hardware and software) of the system are introduced. The flow pattern identification method based on CNNs and transfer learning was discussed in detail. Several potential CNN candidates such as ALexNet, VggNet16 and ResNets were introduced and compared with each other based on a flow pattern dataset. According to the results, ResNet50 is the most promising CNN network for the system owing to its high precision, fast classification and strong robustness. This work can be a reference for the online monitoring system design in the energy system.
최근 SDN 기술이 실제 통신 사업에 적용되면서 사용자가 많아지며 네트워크에 흐르는 데이터 량이 많아짐에 따라 네트워크 데이터 흐름 관리에 대한 관심이 늘고 있다. 이 과정에서 전송되는 네트워크 상의 데이터의 기밀성, 무결성, 가용성, 추적 가능성이 보장되는지 확인할 수 있어야 한다. 또한, 다양한 분야에서 요구되는 네트워크상에서 데이터를 실시간으로 흐름을 관측하고 통제를 시각적으로 확인할 수 있는 환경이 개발이 필요하다. 본 논문에서는 첫 번째로 Mininet을 응용하여 네트워크 토폴로지를 시각적으로 구성하고 다양한 속성을 부여할 수 있는 환경을 구축하였다. 둘째, Mininet 환경에서 OpenDayLight를 추가하여 네트워크 토폴로지에서 네트워크 트래픽 흐름을 시각적으로 확인하고 제어할 수 있는 시뮬레이션 환경을 개발하였다.
본 논문에서는 유한차분법, 채널망 해석법 및 절리망 해석법 등 다양한 해석기법을 이용하여 개별 암석절리 및 절리암반에서의 지하수 유동과 주입재의 유동거동을 연구하였다. 유동거동은 두개의 상이한 관찰규모, 즉 변화하는 간극분포를 가진 실험실 규모의 거친 절리면과 3개의 절리군에 속한 단절된 절리들을 포함하고 있는 현장 규모의 절리암반에 대해 수행되었다. 단일절리에서의 유동해석결과 물과 주입재 모두 간극분포에 의존하는 채널흐름의 특성을 확인할 수 있었다. 유한차분법과 기존의 이론해에 의한 유량 계산결과를 비교 분석하였다. 절리암반의 경우 절리의 수와 굴착된 원형공동의 직경을 증가시키면서 공동내부로의 지하수 유입량을 분석하였다. 이 분석에는 절리망 해석법과 Goodman의 이론해를 사용하여 결과를 비교하였다. 또한 절리망 해석법의 경계효과, 절리망의 비균질성이 지하수 유동에 미치는 영향 등을 논의하였다.
The flow stresses have been identified prior to a numerical simulation for predicting a deformation of materials using the experimental or analytical analysis. Recently, the flow stress models considering the temperature effect have been developed to reduce the number of experiments. Artificial neural network can provide a simple procedure for solving a problem from the analytical models. The objective of this paper is the prediction of flow stress on the fiber metal laminate using the artificial neural network. First, the training data were obtained by conducting the uniaxial tensile tests at the various temperature conditions. After, the artificial neural network has been trained by Levenberg-Marquardt method. The numerical results of the trained model were compared with the analytical models predicted at the previous study. It is noted that the artificial neural network can predict flow stress effectively as compared with the previously-proposed analytical models.
The Journal of Asian Finance, Economics and Business
/
제8권11호
/
pp.243-251
/
2021
The goal of this study is to examine the characteristics of Chinese visitors visiting Thailand, determine the rules, and give a reference for Thai tourism authorities and businesses when developing marketing strategies for the Chinese market. This paper constructs the tourism flow network and takes Bangkok as the major research target. The statistical characteristics of the network are studied using the SNA method, based on the trip notes of Thailand on www.mafengwo.cn, a prominent travel website in China as the data source. The results show that: Shanghai, Beijing, and Tianjin occupy important positions in the network; The flow direction of Chinese tourists to Thailand mainly tends to Bangkok, Chiang Mai, Pattaya, and Phuket Island; Grand Palace have strong tourism flow aggregation, diffusion, and control over other nodes in the whole network structure; Tom Yu Kuang has the greatest degree centrality in all Thai cuisine. The findings of the study can help relevant management departments create tourist policies and modify market strategies by developing the regular characteristics of China's tourism flow to Thailand in the theoretical field.
FORD and FULKERSON have shown that a stationary maximal dynamic flow can be obtained by solving a transhipment problem associated with the static network and thereby finding the maximal temporally repeated dynamic flow. This flow is known to be an optimal dynamic flow. this paper presents the remark that temporally repeated flows may be not optimal for a minimal dynamic flow and an algorithm for such a flow. a numerical example is presented.
This paper presents a method of implementing efficient optical flow estimation for dynamic scene analysis using the hierarchical Hopfield neural networks. Given the two consequent inages, Zhou and Chellappa suggested the Hopfield neural network for computing the optical flow. The major problem of this algorithm is that Zhou and Chellappa's network accompanies self-feedback term, which forces them to check the energy change every iteration and only to accept the case where the lower the energy level is guaranteed. This is not only undesirable but also inefficient in implementing the Hopfield network. The another problem is that this model cannot allow the exact computation of optical flow in the case that the disparities of the moving objects are large. This paper improves the Zhou and Chellapa's problems by modifying the structure of the network to satisfy the convergence condition of the Hopfield model and suggesting the hierarchical algorithm, which enables the computation of the optical flow using the hierarchical structure even in the presence of large disparities.
본 연구는 통행배분 모형과 네트워크 로딩의 일반적인 원리 및 그 관계를 규명하고. 시간을 고려한 네트워크 로딩방법 즉, 동적네트워크 로딩 방법을 소개한다. 우선 본 연구에서는, 동적 네트워크 로딩을 올바로 구현하기 위해 인과성 (causality), FIFO(First-In-First-Out), 교통량전파(flow propagation), 교통류보존(flow conservation) 등의 조건이 만족되어야 함을 제기한다. 그리고, 구체적인 동적 네트워크 로딩 방법을 알고리즘 형식으로 설명하였으며, 이후 링크 비용함수로써 결정적 대기행렬모형을 도입하여 가상 네트워크 속에서 동적 네트워크 로딩이 어떻게 이루어지는지를 수치적으로 보여준다.
본 논문에서는 빠르고 정확하게 elephant flow를 발견할 수 있는 알고리즘을 제시한다. 최근 인터넷 사용자의 증가와 다양한 응용 프로그램의 등장으로 인하여, 네트워크 트래픽의 대규모화가 급속히 진행되고 있는 추세이다. 이러한 변화에 따라 네트워크 대역의 상당 부분을 점유하는 elephant flow 가 자주 발생하게 되었다. Elephant flow는 인터넷 트래픽의 관리 (management) 및 서비스 측면에서 네트워크 대역 (network bandwidth)의 불공평한 사용 문제를 유발한다. 본 논문에서는 Elephant flow를 발견하는 방법들 중 하나인 기존 Landmark-LRU 기법에 간단한 메커니즘을 추가시켜, 발견율을 크게 증가시키는 방법을 제시하였다. 그리고 제안하는 개선안을 실제 네트워크에서 추출한 트레이스 (network traces)에 적용하는 시뮬레이션을 통하여 평가하였다. 그 결과로 우리가 제시하는 개선 알고리즘이 효율적인 메모리 비용을 유지하면서 Landmark-LRU 기법보다 더 정확하게 elephant flow를 발견하는 것을 확인할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.