• Title/Summary/Keyword: Flow front

Search Result 888, Processing Time 0.029 seconds

Numerical Simulations of Discontinuous Density Currents using k-ε Model (k-ε 모형을 이용한 불연속 유입 밀도류의 수치모의)

  • Lee, Hea Eun;Choi, Sung Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.231-237
    • /
    • 2009
  • This study presents a numerical model to simulate density currents developing two dimensionally. The ${\kappa}-{\varepsilon}$ model is used for the turbulence closure. Elliptic flow equations are solved by the finite volume method. In order to investigate the applicability of the numerical model, discontinuous density currents are simulated numerically. The vortices due to the instability at the interface are simulated, showing a good agreement with the experimental visualizations in the literature. It is also investigated that the transition from slumping phase to inertial phase occurs when a bore generated at the end wall overtakes the front. However, the propagation of the density current is retarded compared with the experimental results. Two-dimensional modeling seems to have an effect on underestimating the front velocity of the density current.

Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width (큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향)

  • Han, Beom-Soon;Kwak, Kyung-Hwan;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

Analytical Study of Delay Model of Traffic Signal Progression Evaluation on Arterial (간선도로 신호연동화 효율의 평가를 위한 지체도 모형의 해석적 연구)

  • 김영찬;황연하
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.131-139
    • /
    • 1999
  • The quality of progression at signalized intersection has the largest potential effect. TRANSYT-7F is widely used to estimate the signal progression delay, but the progress of collecting and executing the compute program appears to be rather cumbersome. The research is to develop the analytical and progressing platoon delay model that is as simple as the methodology of HCM and familiar with the output of simulation model. The general approach to this research was conducted to examine the Rouphail and NCHRP 339 methodology together with the existing progression delay model (TRANSYT-7F. HCM). The scope is contained to be applicable only to cycles with no overflow queue and to obtain a comprehensive evaluation of the effects of changes in the quality of traffic signal progression on stopped delay and to be analyzed a simple mathematical method. The principle assumption for this model is that secondary flows is dispersed and partly mixed with average flow of the primary progressed flow. A second assumption is that through flow is consisted with the part of saturation flow at the front of it and the part of average flow at the rear of it. The delay equations vary for two arrival. The conclusion of this study could be summarized as 1)The evaluation of this model was consistently similar to that of TRANSYT-7F, 2) Platoon pattern has the real traffic flow characteristics. 3) The computing process of progression delay is made to have simple logic and easy calculation by integration, 4) This model could be estimated to be applied in almost all case.

  • PDF

Computational Fluid Dynamics(CFD) Simulation and in situ Experimental Validation for the Urea-Based Selective Non-Catalytic Reduction(SNCR) Process in a Municipal Incinerator (생활폐기물 소각장 2차 연소로에서 요소용액을 이용한 선택적무촉매환원 공정에 대한 전산유체역학 모사 및 현장 검증)

  • Kang, Tae-Ho;Nguyen, Thanh D.B.;Lim, Young-Il;Kim, Seong-Joon;Eom, Won-Hyeon;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.630-638
    • /
    • 2009
  • A computational fluid dynamics(CFD) model is developed and validated with on-site experiments for a urea-based SNCR(selective non-catalytic reduction) process to reduce the nitrogen oxides($NO_x$) in a municipal incinerator. The three-dimensional turbulent reacting flow CFD model having a seven global reaction mechanism under the condition of low CO concentration and 12% excess air and droplet evaporation is used for fluid dynamics simulation of the SNCR process installed in the incinerator. In this SNCR process, urea solution and atomizing air were injected into the secondary combustor, using one front nozzle and two side nozzles. The exit temperature($980^{\circ}C$) of simulation has the same value as in situ experiment one. The $NO_x$ reduction efficiencies of 57% and 59% are obtained from the experiment and CFD simulation, respectively at NSR=1.8(normalized stoichiometric ratio) for the equal flow rate ratio from the three nozzles. It is observed in the CFD simulations with varying the flowrate ratio of the three nozzles that the injection of a two times larger front nozzle flowrate than the side nozzle flowrate produces 8% higher $NO_x$ reduction efficiency than the injection of the equal ratio flowrate in each nozzle.

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF

Study on Characteristics of Transient Soulte Transport in the Vadose Zone by Using TDR: (2) Application (TDR(Time Domain Reflectometry)를 이용한 비포화 토양에서 천이상태의 오염원 이송확산 특성에 관한 연구 : (2) 적용)

  • Park, Jae-Hyeon;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.6
    • /
    • pp.751-762
    • /
    • 1999
  • In this study, a 1-D laboratory experiment was conducted to investigate the characteristics of transient unsaturated solute transport by using two kinds of soils of which properties were known by test. Especially the TDR method which is proposed in this study was used to measure water content and solute concentration. As results, in the transient flow, the wetting front moves down rapidly, and the distribution of solute concentration near the wetting front showed the similar type of the water content distribution(semi-bell type). A numerical model HYDRUS was used to compare with the experimental results. Numerical results for the water movement are similar to experimental result. However, numerical results of the distribution of solute concentration are more scattered than experimental results. It means that measured dispersivity, numerical dispersion, adsorption coefficient, and soil sample size etc. should be considered in order to determine the dispersivity used in the numerical model. The present measuring method was proved to be superior to other formula and to be an available method to apply to solute transport test. The measuring error of the developed method is estimated smaller than 10% while water content is larger than 0.15.

  • PDF

Effect on the Flow and Heat Transfer of Endwall by Installation of Cut Pin in Front of Pin-fin Array of Turbine Blade Cooling Passage (가스터빈 블레이드 핀-휜 내부 냉각 유로에 분절핀 설치에 따른 바닥면 유동 및 열전달 특성)

  • Choi, Seok Min;Kim, Su Won;Park, Hee Seung;Kim, Yong Jin;Cho, Hyung Hee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.43-55
    • /
    • 2020
  • The effect of cutted pin in front of pin-fin array was analyzed for increasing the cooling performance of gas turbine blade. The numerical simulations were conducted to figure out the flow and thermal characteristics. The base case which is staggered pin-fin array, cut pin case 1 which has X2/Dp=1.25 cut pin and cut pin case 2 which has X3/Dp=1.75 cut pin were compared. The results showed that cut pin increases the strength of the horseshoe vortex which occurred at the leading edge of pin-fin array. Furthermore, the wake effect is reduced at the trailing edge of pin-fin array. As a result, the heat transfer distribution on the endwall increases. However, the friction factor increases owing to the installation of cut pin, but the thermal performance factor is increased maximum 23.8% in cut pin case 2. Therefore, installation of cut pin will be helpful for increasing the cooling performance of pin-fin array of gas turbine blade.

Effect of a Frontal Impermeable Layer on the Excess Slurry Pressure during the Shield Tunnelling (전방 차수층이 쉴드터널 초과 이수압에 미치는 영향)

  • Lee, Yong-Jun;Lee, Sang-Duk
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1199-1213
    • /
    • 2011
  • Slurry type shield would be very effective for the tunnelling in a sandy ground, but low slurry pressure could cause a tunnel face failure or a ground settlement in front of the tunnel face. Thus, the stability of tunnel face could be maintained by applying an excess slurry pressure that is larger than the active earth pressure. However, the slurry pressure should increase properly because an excessively high slurry pressure could cause the slurry flow out or the passive failure of the frontal ground. It is possible to apply the high slurry pressure without passive failure if a horizontal impermeable layer is located in the ground in front of the tunnel face, but its location, size, and effects are not clearly known yet. In this research, two-dimensional model tests were carried out in order to find out the effect of a horizontal impermeable layer for the slurry shield tunnelling in a saturated sandy ground. As results, larger slurry pressure could be applied to increase the stability of the tunnel face when the impermeable layer was located in the ground above the crown in front of the tunnel face. The most effective length of the impermeable grouting layer was 1.0~1.5D, and the location was 1.0D above the crown level. The safety factor could be suggested as the ratio of the maximum slurry pressure to the active earth pressure at the tunnel face. It could also be suggested that the slurry pressure in the magnitude of 3.5~4.0 times larger than the active earth pressure at the initial tunnel face could be applied if the impermeable layer was constructed at the optimal location.

  • PDF

Empirical Formula for Propagation Distance of Flood Wave-front in Flat Inundation Area without Obstacle due to Levee Breach (장애물이 없는 평탄지형 제내지에서의 범람홍수파 선단 전파거리 실험식 산정)

  • Yoon, Kwang-Seok;Lee, Jong-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.833-840
    • /
    • 2007
  • The experimental study was carried out to investigate propagation distance of flood wave due to levee breach in a flat inundation area without obstacle. Hitter solution was considered to formulate the experimental results and a representative form was written referring to existing researches. As a result of experiments, it was found that the propagation velocity of the wave front in inundation area was significantly influenced by the initial water level in a channel, which was similar to flow in a channel due to dam break. An empirical formula was also suggested using the experimental results. The dimensionless propagation distance L can be written as the power function of dimensionless time T Coefficients k and m were varied with the dimensionless time T whereas k and m in Ritter solution were 2 and 0, respectively. The variation of coefficients in the relationship between L and T was influenced by the water depth in the inundation area and the fact proved that the changing points of L in the slope of relationship between L and T are the same to those of relationship between the dimensionless maximum water depth in the inundation area, $h_{max}$ and L.

Analysis on Attraction Power and Holding Power of Exhibition Areas at Science Museum(II) - Focused on Analysis on Exhibition Method of Exhibition Spaces - (과학계 박물관 전시공간의 흡입력과 지속력 분석(II) - 전시영역별 연출매체의 분포특성 분석을 중심으로 -)

  • Lim, Che-Zinn;Choo, Sung-Won;Park, Moo-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • This study analyzed visitors' behaviors in the viewpoint of Attraction Power and Holding Power of exhibits on the basis of exhibition layout of real science museums. Through the analysis, the study grasped efficiency of analysis index and exhibition environment elements which might have an effect on planning the exhibition space of a large-scale museum and producing detailed ranges of exhibition. The main indicators used are: 1. Attraction Power: it indicates the relative incidence of people who have stopped in front of an object/exhibit during the exhibition tour. It is calculated by dividing the number of people who stop by the total number of people who have visited the museum or gallery. 2. Holding Power: it measures the average time spent in front of an information/communication element. It is calculated by dividing the average time of stay by the time "necessary" to read an element. As a result of analyzing the exhibition areas of National Science Museum (Daejeon) and National Museum of Emerging Science and Innovation(Tokyo), the Holding Power was found to be relatively lower than the Attracting Power. This means that 3.5 out of 10 visitors stop in front of the exhibit in 6 exhibition areas, and among these, only 1/10 is used when compared to the user required time of the exhibits. In other words, like the method of deriving an analysis index, the stage of viewing can be categorized as Attracting Power and Holding Power, and because the stage from Attracting Power to the stage of Holding Power are strongly linked, it shows that it is not easy to display a meaningful result. Except, the general distribution of Attracting Power was shown to be high from the entrance area of the exhibition hall based on the standard of viewing sequence. Also, the Holding Power became sequentially lower according to the sequence of exhibition viewing and displayed a meaningful interrelationship with the distribution ratio of island exhibits. In the case of island exhibition method, it is less influenced by the movement flow of visitors when compared to the wall type method of exhibition and can be understood as an exhibition method that provides spatial chances enabling stopping and viewing.