• Title/Summary/Keyword: Flow front

Search Result 888, Processing Time 0.036 seconds

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

The Effect of Flow Distribution on Transient Thermal Behaviour of CDPF during Regeneration (배기의 유속분포가 CDPF의 재생 시 비정상적 열적 거동에 미치는 영향)

  • Jeong, Soo-Jin;Lee, Jeom-Joo;Choi, Chang-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.10-19
    • /
    • 2009
  • The working of diesel particulate filters(DPF) needs to periodically burn soot that has been accumulated during loading of the DPF. The prediction of the relation between an uniformity of gas velocity and soot regeneration efficiency with simulations helps to make design decisions and to shorten the development process. This work presents a comprehensive combined 'DOC+CDPF' model approach. All relevant behaviors of flow fluid are studied in a 3D model. The obtained flow fields in the front of DPF is used for 1D simulation for the prediction of the thermal behavior and regeneration efficiency of CDPF. Validation of the present simulation are performed for the axial and radial direction temperature profile and shows goods agreement with experimental data. The coupled simulation of 3D and 1D shows their impact on the overall regeneration efficiency. It is found that the flow non-uniformity may cause severe radial temperature gradient, resulting in degrading regeneration efficiency.

A Study on Air Flow Analysis due to the Shape of Automotive Body (자동차 차체의 형상에 따른 공기 유동해석에 관한 연구)

  • Lee, Hyun-Chang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.5 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this study, the air resistance is studied by using flow analysis near automotive body due to the its shape. Flow velocities of airs entering into inlet plane are two kinds of 70 km/h and 100 km/h. Air resistance in case of high speed driving(100 km/h) becomes higher than regular speed driving(70 km/h) and the resistance in case of the car with wider cross section at front side becomes higher than narrower cross section. By using this analysis result, the shape of automotive body can be effectively designed in order to reduce the air resistance.

A MASS LUMPING AND DISTRIBUTING FINITE ELEMENT ALGORITHM FOR MODELING FLOW IN VARIABLY SATURATED POROUS MEDIA

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.20 no.3
    • /
    • pp.243-259
    • /
    • 2016
  • The Richards equation for water movement in unsaturated soil is highly nonlinear partial differential equations which are not solvable analytically unless unrealistic and oversimplifying assumptions are made regarding the attributes, dynamics, and properties of the physical systems. Therefore, conventionally, numerical solutions are the only feasible procedures to model flow in partially saturated porous media. The standard Finite element numerical technique is usually coupled with an Euler time discretizations scheme. Except for the fully explicit forward method, any other Euler time-marching algorithm generates nonlinear algebraic equations which should be solved using iterative procedures such as Newton and Picard iterations. In this study, lumped mass and distributed mass in the frame of Picard and Newton iterative techniques were evaluated to determine the most efficient method to solve the Richards equation with finite element model. The accuracy and computational efficiency of the scheme and of the Picard and Newton models are assessed for three test problems simulating one-dimensional flow processes in unsaturated porous media. Results demonstrated that, the conventional mass distributed finite element method suffers from numerical oscillations at the wetting front, especially for very dry initial conditions. Even though small mesh sizes are applied for all the test problems, it is shown that the traditional mass-distributed scheme can still generate an incorrect response due to the highly nonlinear properties of water flow in unsaturated soil and cause numerical oscillation. On the other hand, non oscillatory solutions are obtained and non-physics solutions for these problems are evaded by using the mass-lumped finite element method.

Simulation of Compression Molding Considering Slip at Interface for Polymeric Composite Sheet (섬유강화 고분자 복합판의 압축성형에 있어서 금형-재료계면의 미끄름을 고려한 유동해석)

  • 장수학;김석호;백남주;김이곤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.163-168
    • /
    • 1991
  • During Compression molding of polymeric composite materials, the flow characteristics should be obtained. Understanding the flow states may be useful for determination of optimum molding conditions, charge pattern etc. So far, for obtaining the flow analysis, no-slip boundary condition was applied on the mold surface. However, The study under consideration of the slip was conducted by Barone and Caulk. They have introduced the nondimensional parameter which is the ratio of viscous to friction resistance and governs the frictional condition. But the method for determining the parameter could not be proposed. In our work, the parameter which explains the interfacial friction is measured under a variety of molding conditions. Two-dimensional rectangular part and circular hollow disk are simulated with the measured parameter using the finite element method. Effects of the parameter on shapes of flow fronts are also presented.

A Study on the Flow Characteristics around Intakes within a Sump by PIV (PIV에 의한 흡입수조내 흡입관 주위의 유동특성에 관한 연구)

  • Choi, J. W.;Kim, J. H.;Kim, K. Y.;Kim, Y. T.;Lee, Y. H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.33-39
    • /
    • 2002
  • The head-capacity corves for pumps developed by the pump manufacturer are based on tests of a single pump operating in a semi-infinite pool with no nearby walls or floors and with no stray currents. Hence, flow into the pump suction is symmetrical with no vortices or swirling. Pump station designers rely on these curves to define the operating conditions for the pump selected. However, various constraints such as size, cost, and limitations on storage time require walls, floors, and pump intakes to be close proximity to each other. From this background, the authors are carrying out a systematic study on the flow characteristics of intakes within a sump found in pump stations. Model pump intake basin is designed and PIV is adopted as a measuring tool to capture the instantaneous flow patterns. Special attention is paid to investigate the flow patterns near the free surface, side-wall, and back-wall due to different clearances from back-wall to vortical intake pipe. Moreover, the locations and patterns of the various types of vortices that were found in the examinations are discussed.

Impact assessment for water pressure and turbidity occurrence by changes in water flow rate of large consumer at water distribution networks (상수도관망에서 대수용가의 유량변화에 따른 수압 및 탁도발생 영향평가)

  • Choi, Doo Yong;Kim, Ju-Hwan;Choi, Min-Ah;Kim, Do-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.3
    • /
    • pp.277-286
    • /
    • 2014
  • Water discolouration and increased turbidity in the local water service distribution network occurred from hydraulic incidents such as drastic changes of flow and pressure at large consumer. Hydraulic incidents impose extra shear stresses on sediment layers in the network, leading to particle resuspension. Therefore, real time measuring instruments were installed for monitoring the variation of water flow, pressure, turbidity and particulates on a hydrant in front of the inlet point of large apartment complex. In this study, it is attempted to establish a more stable water supply plan and to reduce complaints from customers about water quality in a district metering area. To reduce red or black water, the water flow monitoring and control systems are desperately needed in the point of the larger consumers.

Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder (가열된 회전원주를 지나는 정상유동 및 열전달해석)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Behavioral Characteristics of the Non-Premixed Methane-Air Flame Oppositely Injected in a Narrow Channel (좁은 채널 내의 대향분류 메탄-공기 비예혼합 화염의 거동 특성)

  • Yun, Young-Min;Lee, Min-Jung;Cho, Sang-Moon;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.264-271
    • /
    • 2009
  • Characteristics of a counter flowing diffusion flame, which is formulated by an oppositely-injected methane-jet flow in a narrow channel of a uniform air flow. The location of the flame fronts and the flame lengths were compared by changing the flow rates of fuel. To distinguish the effects of the narrow channel on the diffusion flame, a numerical simulation for an ideal two-dimensional flame was conducted. Overall trends of the flame behavior were similar in both numerical and experimental results. With the increase of the ratio of jet velocity to air velocity flame front moved farther upstream. It is thought that the flow re-direction in the channel suppresses fuel momentum more significantly due to the higher temperature and increased viscosity of burned gas. Actual flames in a narrow channel suffer heat loss to the ambient and it has finite length of diffusion flame in contrast to the numerical results of infinite flame length. Thus a convective heat loss was additionally employed in numerical simulation and closer results were obtained. These results can be used as basic data in development of a small combustor of a nonpremixed flame.

In Vivo Visualization of Flow in Xylem Vessels of a Bamboo Leaf Using Synchrotron X-ray Micro Imaging Technique (Synchrotron X-ray 미세영상기법을 이용한 식물 목질부 내부 수액 유동의 계측)

  • Kim, Yang-Min;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1612-1617
    • /
    • 2003
  • Synchrotron X-ray micro imaging technique was employed to non-invasively monitor the water flow inside xylem vessels in a bamboo leaf. The phase contrast X-ray images clearly visualized plant anatomy and the rise of a water front inside the vessels. Consecutive X-ray images taken for 60 seconds revealed water rise kinetics against gravity in the xylem of a cut dry leaf taken from a bamboo tree. For the first time, traces of water rise, variation of contact angle between water and xylem wall as well as the internal structure of xylem were obtained. In xylem vessels, a repeating flow pattern has a typical flow velocity of 30.7$\mu\textrm{m}$/s and faster flow is established intermittently. It is concluded that the transmission type of X-ray micro imaging can be used as a powerful tool to investigate the ascent of sap in the xylem vessels at a resolution higher than that of MRI.