• Title/Summary/Keyword: Flow configuration

Search Result 1,147, Processing Time 0.027 seconds

Convergence Study on Flow due to the Configuration of Bobsleigh (봅슬레이의 형상에 따른 유동에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.159-164
    • /
    • 2019
  • The front bumper of bobsleigh is mounted to alleviate the impact, but the air resistance to the bobsleigh depends on the body shape positioned in front. This study was conducted the flow analyses about three kinds of bobsleigh configurations. Models B and C with the sharp type of the front can reduce the air resistance than model A with the round type of the front. And the type that the back of the bumper narrows can generate a flow smoother than the one widening. It is thought that the results of this study can be devoted at ensuring the body design to reduce the flow resistance most at bobsleigh. As the design data with the durability of bobsleigh obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.

A Study of Optimal Model for the Circuit Configuration of Korean Pulsatile Extracorporeal Life Support System (T-PLS) (한국형 박동식 생명구조장치(T-PLS) 순환회로를 위한 최적화 모델 연구)

  • Lim Choon Hak;Son Ho Sung;Lee Jung Joo;Hwang Znuke;Lee Hye Won;Kim Kwang Taik;Sun Kyung
    • Journal of Chest Surgery
    • /
    • v.38 no.10 s.255
    • /
    • pp.661-668
    • /
    • 2005
  • Background: We have hypothesized that, if a low resistant gravity-flow membrane oxygenator is used, then the twin blood sacs of TPLS can be located at downstream of the membrane oxyenator, which may double the pulse rate at a given pump rate and increase the pump output. The purpose of this study was to determine the optimal configuration for the ECLS circuits by using the concept of pulse energy and pump output. Material and Method: Animals were randomly assigned to 2 groups in a total cardiopulmonary bypass model. In the serial group, a conventional membrane oxygenator was located between the twin blood sacs. In the parallel group, the twin blood sacs were placed downstream of the gravity-flow membrane oxygenator. Energy equivalent pressure (EEP) and pump output were collected at pump-setting rates of 30, 40, and 50 BPM. Result: At the given pump-setting rate, the pulse rate was doubled in the parallel group. Percent changes of mean arterial pressure to EEP were $13.0\pm1.7,\; 12.0\pm1.9\;and\;7.6\pm0.9\%$ in the parallel group, and $22.5\pm2.4,\; 23.2\pm1.9,\;and\;21.8\pm1.4\%$ in the serial group at 30, 40, and 50 BPM of pump-setting rates. Pump output was higher in the parallel circuit at 40 and 50 BPM of pump-setting rates $(3.1\pm0.2,\;3.7\pm0.2L/min\;vs.\;2.2\pm0.1\;and\;2.5\pm0.1L/min,\;respectively,\;p=0.01)$. Conclusion: Either parallel or serial circuit configuration of the ECLS generates effective pulsatility. As for the pump out, the parallel circuit configuration provides higher flow than the serial circuit configuration.

An Experimental Study on the Aerodynamic Characteristics of a Stealth Configuration (스텔스 형상 공력특성에 관한 실험적 연구)

  • Oh, See-Yoon;Kim, Sang-Ho;Ahn, Seung-Ki;Cho, Cheol-Young;Lee, Jong-Geon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.962-968
    • /
    • 2008
  • An experimental study of the aerodynamic characteristics of a stealth configuration, the test techniques developed for the testing in the Low Speed Wind Tunnel of Agency for Defense Development(ADD-LSWT), and the lessons learned have been presented. The main objectives of this test are to determine the aerodynamic characteristics of a stealth configuration and to measure the flow field characteristics with a 5-hole pressure probe. The test results are discussed and the effect of the leading edge shape on the aerodynamic characteristics is also given.

Numerical Simulation of Rotor-Fuselage Aerodynamic Interaction Using an Unstructured Overset Mesh Technique

  • Lee, Bum-Seok;Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2010
  • Numerical simulation of unsteady flows around helicopters was conducted to investigate the aerodynamic interaction of main rotor and other components such as fuselage and tail rotor. For this purpose, a three-dimensional inviscid flow solver has been developed based on unstructured meshes. An overset mesh technique was used to describe the relative motion between the main rotor, and other components. As the application of the present method, calculations were made for the rotor-fuselage aerodynamic interaction of the ROBIN (ROtor Body INteraction) configuration and for a complete UH-60 helicopter configuration consisted of main rotor, fuselage, and tail rotor. Comparison of the computational results was made with measured time-averaged and instantaneous fuselage surface pressure distributions for the ROBIN configuration and thrust distribution and available experimental data for the UH-60 configuration. It is demonstrated that the present method is efficient and robust for the simulation of complete rotorcraft configurations.

Tip Clearance Effect on Through-Flow and Performance of a Centrifugal Compressor

  • Eum, Hark-Jin;Kang, Young-Seok;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.979-989
    • /
    • 2004
  • Numerical simulations have been performed to investigate tip clearance effect on through-flow and performance of a centrifugal compressor which has the same configuration of impeller with six different tip clearances. Secondary flow and loss distribution have been surveyed to understand the flow mechanism due to the tip clearance. Tip leakage flow strongly interacts with mainstream flow and considerably changes the secondary flow and the loss distribution inside the impeller passage. A method has been described to quantitatively estimate the tip clearance effect on the performance drop and the efficiency drop. The tip clearance has caused specific work reduction and additional entropy generation. The former, which is called inviscid loss, is independent of any internal loss and the latter, which is called viscous loss, is dependent on every loss in the flow passage. Two components equally affected the performance drop as the tip clearances were small, while the efficiency drop was influenced by the viscous component alone. The additional entropy generation was modeled with all the kinetic energy of the tip leakage flow. Therefore, the present paper can provide how to quantitatively estimate the tip clearance effect on the performance and efficiency.

AERODYNAMIC ANALYSIS OF A PITCH OSCILLATING MID-SIZED AIRCRAFT (피치 진동하는 중형항공기의 공력 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Ahn, Seok-Min
    • Journal of computational fluids engineering
    • /
    • v.16 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • Aerodynamic analysis was done for a fuselage and wing configuration of a mid-sized aircraft using unsteady 3-dimensional Navier-Stokes solver. Various turbulent models including a transitional SST were used to observe a dynamic stall as well as cruise characteristics. Also, different mesh moving methods were evaluated. Flow hysteresis which causes dynamic stall was investigated through flow field investigations.

Preliminary Simulation Analysis of the LASGIT Experiment (방사성 폐기물의 지중저장을 위한 스웨덴 LASGIT 실험의 예비적인 시뮬레이션 분석)

  • Park, Chan-Hee;Walsh, Robert
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.197.2-197.2
    • /
    • 2011
  • Preliminary analysis on the modeling conditions and the simulation results is conducted only to evaluate the correctness of the simulation configuration further to apply for the LASGIT project. Except for the unrealistic modeling conditions for the relations of capillary pressure and relative permeability against water saturation used previously, the simulation results successfully demonstrate Helium propagation typical for two-phase flow. Further elaborated simulation with more realistic parameters should complete the weak points of the preliminary work.

  • PDF

DYNAMIC STALL ANALYSYS OF A MID-SIZED AIRCRAFT (중형항공기 동적 실속 특성 해석)

  • Lee, Yung-Gyo;Kim, Cheol-Wan;Ahn, Seok-Min
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.37-39
    • /
    • 2010
  • Aerodynamic analysis was done for a fuselage and wing configuration of a mid-sized aircraft using 3-dimensional Navier-Stokes solver. Various turbulent models including a transitional SST were implemented to observe a dynamic stall as well as cruise characteristics. Also, different mesh moving methods were evaluated. Flow hysteresis which causes dynamic stall was investigated through flow field investigations.

  • PDF

LES for unsteady flow past n cavity (공동을 지나는 비정상 유동에 대한 LES 해석)

  • Lim Jongsoo;shin Dongshin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.791-794
    • /
    • 2002
  • Cavity is inevitably included in automobile vehicle configuration. The complex unsteady flow and sound waves generated by the cavity are very important issues because of the involved fluid dynamics and the practical importance in the field of aerodynamics. The LES method used is a conventional one with Smagorinsky eddy-viscosity model and the computational grid is small enough to be handled by workstation-level computers. LES can successfully simulate of cavity noise analysis.

  • PDF

Inverse Design For a Airfoil Using Optimizing Method (최적화기법을 이용한 익형의 역설계)

  • Kim Jong-seub;Park Warn-gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.126-130
    • /
    • 1997
  • A new and efficient method is presented for design optimization, which is based on a computational fluid dynamics (CFD). The method is applied to design an airfoil configuration. The Navier-Stokes equations are solved for the viscous analysis of the flow, which provides the object function. The CFD analysis is then coupled with the optimization procedure that used a conjugate gradient method. During the one-dimensional search of the optimization procedure, an approximate flow analysis based on a first-order Taylor series expansion is used to reduce the computational cost, (This study is supported by Korean Ministry of Education through Research Fund)

  • PDF