• Title/Summary/Keyword: Flow calculation

Search Result 1,938, Processing Time 0.027 seconds

Progress of the cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.221-224
    • /
    • 2009
  • Since the coupling of cavitation modeling with turbulent flow is the difficulty topic, a numerical simulation for two phase flow remains as one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around conical body combined with cavitation model suggested by Kunz et al. with k-e turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. The calculation results show very good agreement with experimental observations. Also, the calculation of cavitation in cryogenic fluid is being done by implementing the temperature sensitivity in government equations and it is still in the progress. This code have been being further extended to 3D compressible two phase flow for the study on the fluid dynamics around inducers and impellers in turbo pump system.

  • PDF

The application of Large Eddy Simulation in designing the impellers of double-flow-conduits-sewage pump

  • Xue-y QI;Zai-lun Liu;chonl QI;Fan-zhon MENG
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.200-202
    • /
    • 2003
  • In this paper, Gauss filter function is used to filter the N-S equation and the subgrid-scale Reynold stresses model is introduced to deduce the practical form of LES equation for 2-D case for flow calculation of hydraulic machine. Then the LES equation and its discrete form in computational field are obtained in the body-fitted coordinate system and the numerical calculation program is built. The incompressible turbulent flow in double-flow-conduits-sewage pump impeller is computed by using the abovementioned program, and then the distribution rules of velocity and pressure in flow field are obtained. Based on this, the designs of double-flow-conduits-sewage pump impeller are optimized.

  • PDF

A Numerical Calculation on Flow Fields around Two-Dimensional Multiple Bodies In Overlapped Grid System (중첩격자계를 사용한 2차원 복수 물체주위 유동장의 수치 계산)

  • Jeong Se-Min;Lee Young-Gill;Lee Seung-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.105-110
    • /
    • 1996
  • In the present paper, flow fields around two dimensional single and two circular cylinders are analysed by a finite difference method. Navier-Stokes and the continuity equations an solved to simulate the flow fields. A overlapped grid system(the composite of a body boundary-fitted grid system near the body and a rectangular grid system for other flow fields) is used for this calculation. In the use of overlapped grid system, it is most significant thing to exchange the physical quantities from one grid system to the other one continuously, In this research, the linear interpolations of physical quantaties are done for this purpose in the overlapped region. The numerical calculations are carried out for the flows around a circular cylinder and two cylinders to verify the accuracy of present method. The flow fields around two cylinders facing the flow with side by side and tandem arrangement are analysed. The results are compared to other experimental and computational ones done in other single grid system.

  • PDF

Analysis of In-Cylinder Flow Characteristics of a High Speed D.I. Diesel Engines (고속 직접분사식 디젤 엔진의 실린더내 유동 해석)

  • Park, Sang-Chan;Ryu, Jae-Deok;Lee, Gi-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1276-1283
    • /
    • 2002
  • Recently, HSDI (High Speed Direct Injection) diesel engine has been spotlighted as a next generation engine because it has a good potential for high thermal efficiency and fuel economy. This study was carried out to investigate the in-cylinder flow characteristics generated in a 4-valve small diesel cylinder head with a tangential and helical intake port. The flow characteristics such as coefficient of flow rate(Cf), swirl ratio (Rs), and mass flow rate (ms) were measured in the steady flow test rig using the impulse swirl meter and the analysis of in-cylinder flow field was conducted by experiment using the PIV and calculation using the commercial CFD code. As the results from steady flow test indicate, the mass flow rate of the cylinder head with a short distance between the two intake ports is increased over 13% than that of the other head. However, the non-dimensional swirl ratio is decreased approximately 15%. From in-cylinder flow characteristics obtained by PIV and CFD calculation, we found that the swirl center was eccentric from the cylinder center and the velocity distribution became uniform near the TDC. In addition, the results of the calculation are good agreement with the experimental results.

DSMC Calculation of the Hypersonic Free Stream and the Side Jet Flow Using Unstructured Meshes (비정렬 격자 직접모사법을 이용한 희박 유동과 측면 제트의 상호 작용에 관한 연구)

  • Kim M. G.;Kwon O. J.;Ahn C. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.126-131
    • /
    • 2004
  • The interaction between the hypersonic free stream and the side jet flow at high altitudes is investigated by direct simulation Monte Carlo(DSMC) method. Since there is a great difference in density between the free stream and the side jet flow, the weighting factor technique which could control the number of simulation particles, is applied to calculate these two flows simultaneously. Chemical reactions are not considered in the calculation. For validation, the corner flow passing between a pair of plates that are perpendicularly attached is solved. The side jet flow is then injected into this comer flow and solution is found for the merged flow. Results are compared with the experiments. For a more realistic rocket model, the flow past a blunted cone cylinder shape is solved. The leeward or windward jet injection is merged with this flow. The effect on the rocket surface is observed at various flow angles. The lambda effect and the wake structure are found like low attitudes. High interaction between the free stream and the side jet flow is observed when the side jet is injected in the windward direction.

  • PDF

A Study of Wire Sweep, Pre-conditioning and Paddle Shift during Encapsulation of Semiconductor Chips (반도체 칩 캡슐화 성형 공정에 있어서 와이어 스윕 및 패들 변형에 관한 연구)

  • Han, Se-Jin;Heo, Yong-Jeong;Lee, Seong-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.102-110
    • /
    • 2001
  • In this paper, methods to analyze wire sweep and paddle shift during the semiconductor ship-encapsulation process have been studied. The analysis of wire sweep includes flow-field analysis in a complicated geometry, drag-force calculation for given flow of fluid, and wire-deformation calculation for given loads. The paddle-shift analysis is used to analyze the deformation of the paddle due to the pressure difference in two cavities. the analysis is done using either analytical solutions or numerical simulation. The analytical solution is used for rough but fast calculation of wire sweep. The numerical solution is used for more accurate calculation of wire-sweep. The numerical results of wire sweep show good agreements with the experimental ones.

  • PDF

Correction and Experimental Verification of Velocity Circulation in a Double-blade Pump Impeller Outlet

  • Kai, Wang;Qiong, Liu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.311-317
    • /
    • 2015
  • It is difficulty to calculate velocity circulation in centrifugal pump impeller outlet accurately. Velocity circulations of a double-blade pump impeller outlet were calculated with Stodola formula, Weisner formula and Stechkin formula. Simultaneously, the internal flow of impeller for the double-blade pump were measured with PIV technology and average velocity circulations at the 0.8, 1.0 and 1.2 times of design flow were obtained. All the experimental values were compared with the above calculation values at the three conditions. The results show that calculation values of velocity circulations with Weisner formula is close to the experimental values. On the basis of the above, velocity circulations of impeller outlet were corrected. The results of experimental verification show that the corrected calculation errors, whose maximum error is 3.65%, are greatly reduced than the uncorrected calculation errors. The research results could provide good references for establishment of theoretical head and multi-condition hydraulic optimization of double-blade pumps.

Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades (회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析))

  • Keon-Je,Oh;Shin-Hyoung,Kang
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF

Measurement Uncertainty Analysis of a Turbine Flowmeter for Fuel Flow Measurement in Altitude Engine Test (엔진 고공 시험에서 연료 유량 측정용 터빈 유량계의 측정 불확도 분석)

  • Yang, In-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.42-47
    • /
    • 2011
  • Measurement uncertainty analysis of fuel flow using turbine flowmeter was performed for the case of altitude engine test. SAE ARP4990 was used as the fuel flow calculation procedure, as well as the mathematical model for the measurement uncertainty assessment. The assessment was performed using Sensitivity Coefficient Method. 11 parameters involved in the calculation of the flow rate were considered. For the given equipment setup, the measurement uncertainty of fuel flow was assessed in the range of 1.19~1.86 % for high flow rate case, and 1.47~3.31 % for low flow rate case. Fluctuation in frequency signal from the flowmeter had the largest influence on the fuel flow measurement uncertainty for most cases. Fuel temperature measurement had the largest for the case of low temperature and low flow rate. Calibration of K-factor and the interpolation of the calibration data also had large influence, especially for the case of very low temperature. Reference temperature, at which the reference viscosity of the sample fuel was measured, had relatively small contribution, but it became larger when the operating fuel temperature was far from reference temperature. Measurement of reference density had small contribution on the flow rate uncertainty. Fuel pressure and atmospheric pressure measurement had virtually no contribution on the flow rate uncertainty.

The Study on a Real-time Flow-rate Calculation Method by the Measurement of Coolant Pump Power in an Integral Reactor (일체형원자로에서 냉각재펌프의 전력측정을 이용한 실시간 유량산정 방법에 관한 연구)

  • Lee, J.;Yoon, J.H.;Zee, S.Q.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.161-166
    • /
    • 2003
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of coolant pump power has been introduced in this study. Up to now, we did not found out a precedent which the coolant pump power is used for the real-time flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the real-time flow-rate calculation method by the measurement of coolant pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs, So, it has been concluded that it is possible to calculate the real-time flow-rate by the measurement of pump motor inputs. In addition, the compensation for a above new method can be made by HBM being now used in the commercial nuclear power plants.

  • PDF