• 제목/요약/키워드: Flow calculation

검색결과 1,940건 처리시간 0.024초

유한요소해석을 사용한 구성 방정식 피팅 시 변형률 속도 민감도 및 요소 크기의 영향 (Effect of Strain Rate Sensitivity and Mesh Size on Constitutive Equation Fitting Using Finite Element Analysis)

  • 구강희;김용주;서민홍;김형섭
    • 소성∙가공
    • /
    • 제31권4호
    • /
    • pp.200-206
    • /
    • 2022
  • The finite element analysis is one of the representative methods for predicting the materials behavior for experiments that are difficult to perform empirically. Constitutive equations are essential for reducing computation time and sharing data because they enable finite element analysis simulations through simple formulae. However, it is difficult to derive accurate flow curves for all materials as most constitutive equations are not formulated based on their physical meaning. Also, even if the constitutive equation is a good representation of the flow curve to the experimental results, some fundamental issues remain unresolved, such as the effect of mesh size on the calculation results. In this study, a new constitutive equation was proposed to predict various materials by modifying the combined Swift-Voce model, and the calculation results with various mesh sizes were compared to better simulate the experimental results.

방화문의 누설틈새 계산 및 연돌효과 분석 (The Leakage Crack Calculation of the Fire Door and the Stack Effect Analysis)

  • 김일영;권창희
    • 한국화재소방학회논문지
    • /
    • 제27권2호
    • /
    • pp.46-53
    • /
    • 2013
  • 건축의 환경이 변하면 그에 따른 설계기준도 변하여야 한다. 방화문의 시험기준이 2005년 7월 27일 차연성 시험이 적용되면서 문틈이 기밀한 구조로 바뀌었다. 그러나 국가화재안전기준은 영국의 자료를 인용한 과거의 문틈규정을 적용함으로서 현실과 설계 규정의 차이가 오차나 안전율 이상으로 과도하다. 설계와 현실의 차이로 인하여 발생하는 결과 및 현상을 분석하고 개정되어야 할 국가화재안전기준의 누설틈새면적 계산법을 제시하고 연돌효과로 인한 방연풍속의 차이를 분석하였으며 생활패턴 및 피난패턴을 반영한 공동주택의 방연풍속 측정법에 대해 고찰하고 합리적인 측정법을 제시하였다.

발전용 소형가스터빈의 축류터빈 공력설계 (Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines)

  • 김중석;이우상;류제욱
    • 대한기계학회논문집B
    • /
    • 제37권4호
    • /
    • pp.415-421
    • /
    • 2013
  • 본 논문은 두산중공업(주)에서 개발 중인 소형 가스터빈의 축류 터빈 설계 과정을 기술하였다. 축류터빈의 설계 과정은 크게 유로설계, 익형설계, 3D 성능 계산의 세 단계로 구성되며. 최적의 유로를 설계하기 위해 자오면의 형상, 평균 반경, 블레이드간 간격, 유로 형상각 등 여러 형상 변수에 대해 통과유동계산 및 손실계산을 수행한다. 익형 설계는 유로 설계시 스팬 방향으로 계산된 입출구 유동각을 기준으로 실험상관식을 적용하여 최적의 블레이드 개수를 결정한 후 2D 익형 단면을 설계하며 2D NS 계산을 통해 캐스케이드 유동구조를 검토하여 설계한 단면의 설계적정성을 평가한다. 설계된 2D 익형 단면을 스팬방향으로 적층하여 3D 익형을 생성하고, 다단 Euler 계산, 단익렬, 다단 NS 계산을 수행하여 3D 유동 특성을 고찰한다.

피스톤 링 팩 및 실린더 보아 마모와 오일소모를 고려한 엔진 내구수명 연구 (A Study on Engine Durability Considering Oil Consumption and Wear of Piston-Ring Pack and Cylinder Bore)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.155-163
    • /
    • 2006
  • Ring, groove and cylinder bore wear may not be a problem in most current automotive engines. However, a small change in ring face, groove geometry and cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blowby and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings, grooves and cylinder bore are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be around the band of averaged test values or a little below.

엔진 내구시험 시 실린더 보아의 마모에 관한 연구 (A Study on Cylinder Bore Wear during Engine Durability Test)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.131-136
    • /
    • 2006
  • Cylinder bore wear may not be a problem in most current automotive engines. However, a small change in cylinder bore diameter can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each pare0s wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of cylinder bore diameter are obtained from three engines before and after engine durability test. The calculated wear data of cylinder bore diameter are turn out to be twice of the lower bound of averaged test values at TDC and the lower bound at BDC.

엔진 내구시험 시 링 외주면 및 그루브 마모에 관한 연구 (A Study on Ring Face and Groove Wear during Engine Durability Test)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.211-217
    • /
    • 2006
  • Ring and groove wear may not be a problem in most current automotive engines. However, a small change in ring face and groove geometry can significantly affect the lubrication characteristics and ring axial motion. This in turn can cause to change inter-ring pressure, blow-by and oil consumption in an engine. Therefore, by predicting the wear of piston ring face, ring groove and cylinder bore altogether, the changed ring end gap and the changed volume of gas reservoir can be calculated. Then the excessive oil consumption can be predicted. Being based on the calculation of gas flow amount by the theory of piston ring dynamics and gas flow, and the calculation of oil film thickness and friction force by the analysis of piston ring lubrication, the calculation theory of oil amount through top ring gap into combustion chamber will be set. This is estimated as engine oil consumption. Furthermore, the wear theories of ring, groove and cylinder bore are included. Then the each amount of wear is to be obtained. The changed oil consumption caused by the new end gap and the new volume of oil reservoir around second land, can be calculated at some engine running interval. Meanwhile, the wear amount and oil consumption occurred during engine durability cycle are compared with the calculated values. Next, the calculated amount of oil consumption and wear are compared with the guideline of each part's wear and oil consumption. So, the timing of part repair and engine life cycle can be predicted in advance without performing engine durability test. The wear data of rings and grooves are obtained from three engines before and after engine durability test. The calculated wear data of each part are turn out to be at the lower bound of aver-aged test values or a little below.

스펙트럼을 이용한 피로손상도 계산과정 최적화 연구 (Study on Optimization of Fatigue Damage Calculation Process Using Spectrum)

  • 김상우;이승재;최솔미
    • 한국해양공학회지
    • /
    • 제32권3호
    • /
    • pp.151-157
    • /
    • 2018
  • Offshore structures are exposed to low- and high-frequency responses due to environmental loads, and fatigue damage models are used to calculate the fatigue damage from these. In this study, we tried to optimize the main parameters used in fatigue damage calculation to derive a new fatigue damage model. A total of 162 bi-modal spectra using the elliptic equation were defined to describe the response of offshore structures. To calculate the fatigue damage from the spectra, time series were generated from the spectra using the inverse Fourier transform, and the rain-flow counting method was applied. The considered optimization variables were the size of the frequency increments, ratio of the time increment, and number of repetitions of the time series. In order to obtain optimized values, the fatigue damage was calculated using the parameter values proposed in previous work, and the fatigue damage was calculated by increasing or decreasing the proposed values. The results were compared, and the error rate was checked. Based on the test results, new values were found for the size of the frequency increment and number of time series iterations. As a validation, the fatigue damage of an actual tension spectrum found using the new proposed values and fatigue damage found using the previously proposed method were compared. In conclusion, we propose a new optimized calculation process that is faster and more accurate than the existed method.

분류식 하수관로에서 유입수 표준매뉴얼 산정방법의 보수적 수정 결과 (Conservative Adjustment of the Standard Calculation Method of Inflow Water Into a Separated Sewer System)

  • 추민경;배효관
    • 한국물환경학회지
    • /
    • 제36권5호
    • /
    • pp.423-430
    • /
    • 2020
  • To improve the low treatment efficiency of sewage treatment plants, the separated sewer system must be maintained to provide an adequate flow rate and quality of the sewage under the effect of inflow. In this study, data from five locations of Namsuk, Dukgok1, Dukgok2, Kanggu, and Opo were used to conservatively calculate the inflow water volume. The sewer flow and rainfall data were collected in 2017. The factors in the standard method used to calculate the inflow of the combined sewer pipes including "rainy days", "rainfall impact period", and "period for basal sewer" were defined as 3 mm/day, continuous rain for two days, and two weeks prior to the inflow generation, respectively. "Rainy days", "rainfall impact period", and "period for basal sewer" were conservatively adjusted to 5 mm/day, continuous rain for five days, and three weeks prior to the inflow generation, respectively. As a results of the adjustment, the linearity (r2) was improved except for in Dukgok1. This implies that the conservative adjustment made in this study could improve the management quality of sewer pipes. Also, the linear correlation coefficient (ai) between inflow and rainfall showed a large difference between the target locations, which can be another monitoring factor affecting the quality of sewer pipes. To improve the correlation based on the individual characteristics of the locations in Korea, the automatic algorithm for the inflow calculation should be developed by innovative intellectual technologies for application to the entire national area.

뭉뚝한 물체에 작용하는 압력의 효율적인 계산법 개발과 조류중에서의 유연한 유벽의 변형 (Development of an Efficient Calculation Method of Pressure Acting on a Bluff Body and the Deformation of Flexible Oil Fences in Currents)

  • 강관형;이정묵
    • 대한조선학회논문집
    • /
    • 제33권4호
    • /
    • pp.22-31
    • /
    • 1996
  • 임의의 형상을 갖는 몽뚝한 물체에 작용하는 압력을 효율적으로 계산할 수 있는 방법을 확립하여, 조류중 유벽의 부유 성능을 스커트의 변형을 고려해 예측할 수 있는 방법을 개발하였다. 물체 전면의 압력은 반류영역을 박리유선을 경계로한 가상의 강체로 놓고 포텐샬 유동을 해석하여 구하였고, 후면의 압력은 기존의 실험 결과를 바탕으로 결정하였다. 압력 계산 방법의 검증을 위해 몇 가지 뭉뚝한 물체의 무한 수심에서의 압력 저항을 계산하여 기존의 실험 결과와 잘 일치한다는 것을 확인하였다. 유벽의 변형은 유동장과 연계되어 있어서 순차반복법을 통하여 구하였다. 여러 조류속도와 추의 질량에 대한 유벽의 변형된 형상과 홀수의 감소를 구하였다.

  • PDF

C3H8-SiCl4-H2 시스템에서의 탄화 실리콘 증착에 대한 열역학적인 해석 (Thermodynamic Prediction of SiC Deposition in C3H8-SiCl4-H2 System)

  • 김준우;정성민;김형태;김경자;이종흔;최균
    • 한국세라믹학회지
    • /
    • 제48권3호
    • /
    • pp.236-240
    • /
    • 2011
  • In order to deposit a homogeneous and uniform ${\beta}$-SiC films by chemical vapor deposition, we demonstrated the phase stability of ${\beta}$-SiC over graphite and silicon via computational thermodynamic calculation considering pressure, temperature and gas composition as variables. The ${\beta}$-SiC predominant region over other solid phases like carbon and silicon was changed gradually and consistently with temperature and pressure. Practically these maps provide necessary conditions for homogeneous ${\beta}$-SiC deposition of single phase. With the thermodynamic analyses, the CVD apparatus for uniform coating was modeled and simulated with computational fluid dynamics to obtain temperature and flow distribution in the CVD chamber. It gave an inspiration for the uniform temperature distribution and low local flow velocity over the deposition chamber. These calculation and model simulation could provide milestones for improving the thickness uniformity and phase homogeneity.