DOI QR코드

DOI QR Code

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines

발전용 소형가스터빈의 축류터빈 공력설계

  • 김중석 (두산중공업(주) 기술연구원) ;
  • 이우상 (두산중공업(주) 기술연구원) ;
  • 류제욱 (두산중공업(주) 기술연구원)
  • Received : 2010.12.13
  • Accepted : 2013.01.29
  • Published : 2013.04.01

Abstract

This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

본 논문은 두산중공업(주)에서 개발 중인 소형 가스터빈의 축류 터빈 설계 과정을 기술하였다. 축류터빈의 설계 과정은 크게 유로설계, 익형설계, 3D 성능 계산의 세 단계로 구성되며. 최적의 유로를 설계하기 위해 자오면의 형상, 평균 반경, 블레이드간 간격, 유로 형상각 등 여러 형상 변수에 대해 통과유동계산 및 손실계산을 수행한다. 익형 설계는 유로 설계시 스팬 방향으로 계산된 입출구 유동각을 기준으로 실험상관식을 적용하여 최적의 블레이드 개수를 결정한 후 2D 익형 단면을 설계하며 2D NS 계산을 통해 캐스케이드 유동구조를 검토하여 설계한 단면의 설계적정성을 평가한다. 설계된 2D 익형 단면을 스팬방향으로 적층하여 3D 익형을 생성하고, 다단 Euler 계산, 단익렬, 다단 NS 계산을 수행하여 3D 유동 특성을 고찰한다.

Keywords

References

  1. Wu C. H., 1951, "A General Through Flow Theory of Fluid Flow with Subsonic or Supersonic Velocity in Turbomachines Having Arbitrary Hubs and Casing Shapes," NASA TN2388.
  2. Denton, J. D. and Dawes, W. N., 1999, "Computational Fluid Dynamics for Turbomachinery Design," J. Mechanical Engineering Science, Vol. 213, pp 107-124. https://doi.org/10.1243/0954411991534843
  3. Moroz, L., Govorushchenko, Y. and Pagur, P., 2005, "Axial Turbine Stages Design: 1D/2D/3D Simulation, Experiment, Optimization," ASME Paper, GT2005- 68614.
  4. Xu, C. and Amano, R. S., 2002, "A Turbomachinery Blade Design and Optimization Procedure," ASME Paper, GT2002-30541.
  5. Kusterer, K., Hagedorn, T. and Bohn D., 2004, "Conjugate Calculations for a Film Cooled Blade Under Different Operating Conditions," ASME Paper, GT2004- 53719.
  6. Demeulenaere, A., Ligout, A. and Hirsch, C., 2004, "Application of Multipoint Optimization to the Design of Turbomachinery Blades," ASME Paper, GT2004-53110.
  7. Denton, J. D., 1993, "Loss Mechanisms in Turbomachinery," ASME J. Turbomachinery, Vol. 115, pp. 621-656. https://doi.org/10.1115/1.2929299
  8. Dejc, M. E. and Trojanovskij, B. M., 1973, "Untersuchung und Berechnung Axialer Turbinenstufen, Veb Verlag Technik," Berlin, pp. 207-209.
  9. Wei, N., 2000, "Significance of Loss Models in Aerothermodynamic Simulation for Axial Turbines," PhD Thesis, Royal Institute of Technology.
  10. Traupel, W., 1966, "Thermische Stromungsmaschinen," Springer Verlag.
  11. Zweifel, O., 1945, "The Spacing of Turbomachine Blading, Especially with Large Angular Deflection," Brown Boveri Review 32.
  12. Coakley, T. J., 1983, "Turbulence Modeling of the Compressible Navier-Stokes Equations," AIAA Paper, No. 83-1693.
  13. Denton, J. D., 2010, "Some Limitations of Turbomachinery CFD," ASME Paper, GT2010-22540.