• Title/Summary/Keyword: Flow Structures

Search Result 2,195, Processing Time 0.032 seconds

Effect of Heat/Mass Transfer in the turbine blade internal passage with various rib arrangement (회전하는 터빈 블레이드 이차유로내 요철 배열이 열/물질전달에 미치는 영향)

  • Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.22-29
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements and rotating on heat/mass transfer in the cooling passage of gas turbine blades. The cooling passage has very complex flow structure, because of the rib turbulator and rotating effect. Experiments and numerical calculation are conducted to investigate the complex flow structures and heat transfer characteristics; the numerical computation is performed using a commercial code, FLUENT ver.5, to calculate the flow structures and the experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. For the rotating duct tests, the test duct, which is the cross section of is $20mm\times40mm$ (the hydraulic diameter, $D_h$, of 26.7 mm, has two-pass with $180^{\circ}$ turning and the rectangular ribs on the wall. The rib angle of attack is $70^{\circ}$ and the maximum radius of rotation is $21.63D_h$. The partition wall has 10 mm thickness, which is 0.5 times to the channel width, and the distance between the tip of the partition wall and the outer wall of the turning region is 26.7 mm $(1D_h)$. The turning effect of duct flow makes the very complex flow structure including Dean type vortex and high turbulence, so that the heat/mass transfer increases in the turning region and at the entrance of the second pass. The Coriolis effect deflects the flow to the trailing surface, resulting in enhancement of the heat/mass transfer on the trailing surface and reduction on the leading surface in the first pass. However, the opposite phenomena are observed in the second pass. The each rib arrangement makes different secondary flow patterns. The complex heat/mass transfer characteristics are observed by the combined effects of the rib arrangements, duct rotation and flow turning.

  • PDF

Experimental investigation on the high frequency flow-induced vibration and pressure drop of cylindrical tube bundle with plate type supporting structures (플레이트형 지지구조체로 지지된 실린더형 관 군의 고주파 유동유발진동 및 압력손실에 대한 실험적 고찰)

  • Lee, Kang-Hee;Kim, Hyung-Kyu;Yoon, Kyung-Ho;Eom, Kyong-Bo;Kim, Jin-Sun;Suh, Jung-Min
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1367-1372
    • /
    • 2008
  • A plate type supporting structure of a tube bundle in axial flow generates a certain band of a high frequency periodic excitation of a vortex shedding and/or a flow separation due to sharp edge of the plate thickness and a severe pressure drop due to a cross-sectional area of the supports. With a design consideration of the low vibration and a small flow resistance, the analysis method is uniquely confined to an experimental approach because a complex geometry of a cylindrical tube bundle and/or physical phenomena related to the fluid-structure interaction of tube bundle in a flow impede a theoretical or a numerical approach. A 5x5 cylindrical tube bundle with 5 supports which were discretely located along the bundle's axis was tested in the FIVPET hydraulic test loop for a design evaluation and an analysis perspectives. A high frequency flow-induced vibration of the supporting structures of the cylindrical tube bundle was measured at a outer surface of a supporting structure through a transparent flow housing by the laser dopper vibrometer. Pressure drop in-between three measurement distances was measured by the differential pressure transmitter. High frequency vibration and pressure drop fairly depends on the geometric design of supporting structure. So, these two parameters would be used as a qualitative design variables for design evaluation and analysis.

  • PDF

Numerical Analysis of Internal Flow Distribution in Scale-Down APR+ (축소 APR+ 원자로 모형에서의 내부유동분포 수치해석)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Kim, Do Hyeong;Kang, Min Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.855-862
    • /
    • 2013
  • A series of 1/5 scale-down reactor flow distribution tests had been conducted to determine the hydraulic characteristics of an APR+ (Advanced Power Reactor Plus), which were used as the input data for an open core thermal margin analysis code. In this study, to examine the applicability of computational fluid dynamics with the porous model to the analysis of APR+ internal flow, simulations were conducted using the commercial multi-purpose computational fluid dynamics software ANSYS CFX V.14. It was concluded that the porous domain approach for some reactor internal structures could adequately predict the flow characteristics inside a reactor in a qualitative manner. If sufficient computational resources are available, the predicted core inlet flow distribution is expected to be more accurate by considering the real geometry of the internal structures, especially upstream of the core inlet.

Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel (사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구)

  • Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.239-245
    • /
    • 2009
  • Levees, the hydro-engineering structure, are similar to earth dams in aspects of shape and structure. However, they are different from earth dams in the external force conditions. As a levee is the structure that is complexly affected by the flow and the water stage in the river, it may be unreasonable to analyze the seepage safety as previous studies derived from the neglect of river flow. In this study, an experiment was conducted to investigate flow structures in a trapezoidal open-channel and the influence of the channel flow on the seepage through a levee. Flow structures in a trapezoidal open-channel were distinguished from a rectangular open-channel such as velocity and bottom shear stress distributions. In case with the flow velocity of 0.5 m/s, seepage water heads were higher 10 percent as compared with the stagnant case. This result is caused by dynamic heads, secondary currents, turbulent fluctuation forces, and various physical factors. It is suggested that external force boundary considered in terms of the flow as well as the water stage is proper to seepage analyses.

COMPUTATIONAL ASSESSEMENT OF OPTIMAL FLOW RATE FOR STABLE FLOW IN A VERTICAL ROTATING DISk CHEMICAL VAPOR DEPOSITION REACTOR (회전식 화학증착 장치 내부의 유동해석을 통한 최적 유량 평가)

  • Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.86-93
    • /
    • 2012
  • A numerical investigation is conducted to search for the optimal flow rate for a rotating-disk chemical vapor decomposition reactor operating at a high temperature and a low pressure. The flow of a gas mixture supplied into the reactor is modeled by a laminar flow of an ideal gas obeying the kinetic theory. The axisymmetric two-dimensional flow in the reactor is simulated by employing a CFD package FLUENT. With operating pressure and temperature fixed, numerical computations are performed by varying rotation rate and flow rate. Examination of the structures of flow and thermal fields leads to a flow regime diagram illustrating that there are a stable plug-like flow regime and a few unfavorable flow regimes induced by mass unbalance or buoyancy. The criterion for sustaining a plug-like flow regime is discussed based on a theoretical scaling argument. Interpretation of the flow regime map suggests that a favorable flow is attainable with a minimum flow rate at the smallest rotation rate guaranteeing the dominance of rotation effects over buoyancy.

A simple test method to assess slump flow and stability of self-compacting concrete

  • Bouziani, Tayeb
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.111-116
    • /
    • 2018
  • Establishment of test methods to assess the fresh properties of self-compacting concrete (SCC) are required to ensure the homogeneity in fresh and hardened states. This paper discusses the suitability of a simple test method for assessing the slump flow and stability of SCC by testing on self-compacting mortar (SCM) fraction. The proposed test method aims at investigating slump flow diameter test and sieve stability test of SCC by testing SCM fraction with a plunger penetration apparatus. A central composite modeling design was performed to evaluate the effects of water/cement ratio (W/C), superplasticizer dosage (SP) and powder marble content (MP) on slump flow diameter, stability and plunger penetration test of fresh SCC. The responses of the derived statistical models are slump flow (Sf), sieve stability (S) and plunger penetration (P). Relationships obtained in this study show acceptable correlations between plunger penetration test value and slump flow diameter test results and stability. It should note that the developed relationships are very useful to predict slump flow diameter and stability of studied SCC mixtures by carrying out a simple plunger penetration test on its mortar, which can save labour and time in laboratory experiments.

Micro-PIV Measurement of Water/Oil Two Phase Flow in a Y-Junction Microchannel (Y형 마이크로채널에서의 물/기름 2상 유동에 대한 Micro-PIV 측정)

  • Yoon,Sang-Youl;Ko, Choon-Sik;Kim, Kyung-Chun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.682-687
    • /
    • 2004
  • Y-junction microchannels are widely used as a flew mixer. Fluids are entered from two branch channels and merged together at a combined channel. In this study, we suggest a simple method to create the fluid digitization using flow instability phenomena. Two immiscible liquids (water/oil) are infused continuously to each Y-junction inlets. Because of the differences in fluid and flow properties at the interface, oil droplet is formed automatically followed by flow instability. In order to clarify the hydrodynamic aspects involved in oil droplet formation, a quantitative flow visualization study has performed. Highly resolved velocity vector fields are obtained by a micro-PIV technique, so that detail flow structures around the droplet are illustrated. In this study, fluorescent particles were mixed with water only for visualization of oil droplet and velocity field measurement in water flow.

Flow Visualization of a jet generated by a sweeping jet actuator (유체 진동기에 의해 생성된 제트의 유동가시화)

  • Park, Tongil;Kim, Daegyoum
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.3
    • /
    • pp.22-27
    • /
    • 2016
  • A sweeping jet actuator (SJA) is an instrument generating pulsing jets with no moving elements. Because of its simple design and high durability to shock and vibration, SJA has recently drawn increasing attention for the application to flow control such as aerodynamic control of a wing and thrust vectoring of a jet engine. However, experimental and numerical studies on SJA have been limited to internal flow structure of SJA. In this study, we investigated the flow structure and its variation in the outlet of SJA. We carried out the experiment to understand the flow structures using PIV (Particle Image Velocimetry). The flow structure varies with a degree of the outlet and volume flow rate. There is leaking process during half jetting cycle. The process of the main jet can occur because the jet moving time increased from one side to the other side.

CFD Analysis of Cavitation Phenomena in Mixed-Flow Pump

  • Sedlar, Milan;Sputa, Oldrich;Komarek, Martin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.1
    • /
    • pp.18-29
    • /
    • 2012
  • This paper deals with the CFD analysis of cavitating flow in the mixed-flow pump with the specific speed of 1.64 which suffers from a high level of noise and vibrations close to the optimal flow coefficient. The ANSYS CFX package has been used to solve URANS equations together with the Rayleigh-Plesset model and the SST-SAS turbulence model has been employed to capture highly unsteady phenomena inside the pump. The CFD analysis has provided a good picture of the cavitation structures inside the pump and their dynamics for a wide range of flow coefficients and NPSH values. Cavitation instabilities were detected at 70% of the optimal flow coefficient close to the NPSH3 value (NPSH3 is the net positive suction head required for the 3% drop of the total head of the pump).

A Study on the Flow Characteristics in Urban Stream Using 3-D Numerical Model (3차원 수치모형을 이용한 도시하천의 흐름특성에 관한 연구)

  • Yoon, Sun-Kwon;Kim, Jong-Suk;Moon, Young-Il;Lee, Il-Ju
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1287-1292
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze 1D or 2D stream flow that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed 3D numerical analysis for correct stream flow interpretation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimenson RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG ${\kappa}-{\varepsilon}$ and LES. Those numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows around the piers at Jangwall bridge in urbarn stream.

  • PDF